Spaces:
Runtime error
Runtime error
File size: 85,874 Bytes
4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
from numpy.lib import pad
import torch
from torch import nn
from torch.nn import functional as F
from random import randint
from detectron2.config import configurable
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.structures import ImageList, Instances, Boxes
from detectron2.utils.events import get_event_storage
from detectron2.utils.logger import log_first_n
from ..backbone import Backbone, build_backbone, build_text_backbone
from ..postprocessing import detector_postprocess
from ..proposal_generator import build_proposal_generator
from ..roi_heads import build_roi_heads
from .build import META_ARCH_REGISTRY
from PIL import Image
import torchvision
from torchvision.transforms import Resize, CenterCrop
from detectron2.data.datasets.clip_prompt_utils import get_cls_names, pre_tokenize
import copy
from ..backbone.fpn import build_resnet_fpn_backbone
from ..roi_heads.fast_rcnn import fast_rcnn_inference
from detectron2.layers import ShapeSpec
from ..backbone.clip_backbone import build_clip_language_encoder
from detectron2.utils.comm import gather_tensors, MILCrossEntropy, SoftTargetCrossEntropy
__all__ = ["CLIPRCNN", "CLIPFastRCNN", "PretrainFastRCNN"]
@META_ARCH_REGISTRY.register()
class CLIPRCNN(nn.Module):
"""
CLIP in R-CNN format.
It takes the image regions as inputs and classifies each image.
It contains the following two components:
1. Per-image feature extraction (visual encoder)
2. Per-image prediction (text-based classifier)
"""
@configurable
def __init__(
self,
*,
clip: Backbone,
offline_backbone: Backbone,
offline_proposal_generator: nn.Module,
roi_heads: nn.Module,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
input_format: Optional[str] = None,
vis_period: int = 0,
clip_crop_region_type: str = 'GT',
test_score_thresh: float = 0.0001,
test_nms_thresh: float = 0.5,
test_topk_per_image: float = 300,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
proposal_generator: a module that generates proposals using backbone features
roi_heads: a ROI head that performs per-region computation
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
input_format: describe the meaning of channels of input. Needed by visualization
vis_period: the period to run visualization. Set to 0 to disable.
"""
super().__init__()
self.clip_backbone = clip
self.offline_backbone = offline_backbone
self.offline_proposal_generator = offline_proposal_generator
self.roi_heads = roi_heads
self.input_format = input_format
self.vis_period = vis_period
if vis_period > 0:
assert input_format is not None, "input_format is required for visualization!"
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
assert (
self.pixel_mean.shape == self.pixel_std.shape
), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
# Detectron2 default pixel mean and std
self.register_buffer("detectron_pixel_mean", torch.tensor([103.530, 116.280, 123.675]).view(-1, 1, 1), False)
self.register_buffer("detectron_pixel_std", torch.tensor([1.0, 1.0, 1.0]).view(-1, 1, 1), False)
# CLIP image loading
if np.sum(pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
assert input_format == 'RGB'
self.div_pixel = True
else: # default setting
self.div_pixel = False
n_px = 224
self.clip_resize = Resize(n_px, interpolation=Image.BICUBIC) # shorter side becomes n_px
self.clip_center_crop = CenterCrop(n_px) # crop image into n_px * n_px at the center
self.region_crop_scales = (1.0, 1.5) # (1.0, 2.0) # (1.0, 1.2) # (1.0,) #
# CLIP text prompt loading
print("Working on pre_tokenize...")
cls_names = get_cls_names(filter_novel=False, from_file='/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/concept_pool/googlecc_nouns_filtered_100.txt') # filter_novel=True; coco='all', coco='base', coco='target'; from_file: a file path for concept pool
# from_file='/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/concept_pool/googlecc_nouns_triplet_parser_filtered_100.txt'
print("Got {} class names: {}\n {} class names in total.".format(len(cls_names), cls_names, len(cls_names)))
input_ids = pre_tokenize(cls_names)
self.num_cls = input_ids.size(0)
self.num_prompt = input_ids.size(1)
self.input_ids_flat = input_ids.view(-1, input_ids.size(2)) # [#cls*#prompts, #context_length]
self.clss_emb_all = None
# CLIP crop image configs
self.clip_crop_region_type = clip_crop_region_type
self.test_score_thresh = test_score_thresh
self.test_nms_thresh = test_nms_thresh
self.test_topk_per_image = test_topk_per_image
@classmethod
def from_config(cls, cfg):
if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN":
offline_backbone = build_resnet_fpn_backbone(cfg, ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))) # build_backbone(cfg)
offline_rpn = build_proposal_generator(cfg, offline_backbone.output_shape())
roi_heads = None # build_roi_heads(cfg, backbone.output_shape()),
elif cfg.MODEL.CLIP.CROP_REGION_TYPE == "GT":
offline_backbone = None
offline_rpn = None
roi_heads = None
clip = build_backbone(cfg)
return {
"clip": clip,
"offline_backbone": offline_backbone,
"offline_proposal_generator": offline_rpn,
"roi_heads": roi_heads,
"input_format": cfg.INPUT.FORMAT,
"vis_period": cfg.VIS_PERIOD,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
"clip_crop_region_type" : cfg.MODEL.CLIP.CROP_REGION_TYPE,
"test_score_thresh" : cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
"test_nms_thresh" : cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
"test_topk_per_image" : cfg.TEST.DETECTIONS_PER_IMAGE,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* image: Tensor, image in (C, H, W) format.
* instances (optional): groundtruth :class:`Instances`
* proposals (optional): :class:`Instances`, precomputed proposals.
Other information that's included in the original dicts, such as:
* "height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
list[dict]:
Each dict is the output for one input image.
The dict contains one key "instances" whose value is a :class:`Instances`.
The :class:`Instances` object has the following keys:
"pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
"""
if not self.training:
return self.inference(batched_inputs)
# No training mode for this arch
def inference(
self,
batched_inputs: List[Dict[str, torch.Tensor]],
detected_instances: Optional[List[Instances]] = None,
do_postprocess: bool = True,
):
"""
Run inference on the given inputs.
Args:
batched_inputs (list[dict]): same as in :meth:`forward`
detected_instances (None or list[Instances]): if not None, it
contains an `Instances` object per image. The `Instances`
object contains "pred_boxes" and "pred_classes" which are
known boxes in the image.
The inference will then skip the detection of bounding boxes,
and only predict other per-ROI outputs.
do_postprocess (bool): whether to apply post-processing on the outputs.
Returns:
When do_postprocess=True, same as in :meth:`forward`.
Otherwise, a list[Instances] containing raw network outputs.
"""
assert not self.training
# get the label prompt, and use CLIP.encode_text() to compute text emb only once
if self.clss_emb_all is None: # compute only once
num_instances = self.input_ids_flat.size(0)
per_split = 1000
num_splits = num_instances // per_split
input_ids_flat = self.input_ids_flat.to(self.device)
#self.clss_emb_all = torch.ones((1203, 512)).to(self.device)
clss_emb_all = []
for i in range(num_splits+1):
if i < num_splits:
clss_emb_i = self.clip_backbone.encode_text(input_ids_flat[per_split*i:per_split*(i+1)]) # per_split x D
else:
clss_emb_i = self.clip_backbone.encode_text(input_ids_flat[per_split*i:]) # per_split x D
# clss_emb_i = clip_model.encode_label(torch.arange(0, 1000).view(-1, 1).long().to(device)) # per_split x D
clss_emb_all.append(clss_emb_i)
self.clss_emb_all = torch.cat(clss_emb_all, 0).view(self.num_cls, self.num_prompt, -1) # [#cls, #prompts, D]
self.clss_emb_all = self.clss_emb_all.mean(1) # ensemble different prompts for each class
# torch.save(self.clss_emb_all.cpu(), "/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/lvis_cls_emb/coco_17_target_cls_emb_notnorm_rn50x4.pth")
self.clss_emb_all = F.normalize(self.clss_emb_all, p=2.0, dim=1) # [#cls, emb_dim]
else:
assert self.clss_emb_all.device == self.device
# get the region proposals, from the backbone & RPN of standard Mask-RCNN, trained on base classes
if self.clip_crop_region_type == "GT":
proposals = None
elif self.clip_crop_region_type == "RPN":
images = self.preprocess_image(batched_inputs)
features = self.offline_backbone(images.tensor)
if detected_instances is None:
if self.offline_proposal_generator is not None:
proposals, _ = self.offline_proposal_generator(images, features, None)
# crop image regions, and use CLIP.encode_image() to get the visual feature
images, bbs, num_bbs = self.preprocess_image_crop(batched_inputs, rpn_proposals=proposals)
img_emb = self.clip_backbone.encode_image(images.tensor)
img_emb = img_emb.view(-1, len(self.region_crop_scales), img_emb.size(1))
img_emb = torch.sum(img_emb, dim=1) # ensemble different scales for each region
img_emb = F.normalize(img_emb, p=2.0, dim=1)
# cosine similarity as logits
all_scores = torch.mm(img_emb, self.clss_emb_all.T)
all_scores = F.softmax(all_scores, dim=-1)
scores, pred_cls = torch.max(all_scores, dim=-1) # Note: [0, #cls-1] representing the categories. The value #cls represents "background".
# convert model outputs into regular output result format
scores_per_img = scores.split(num_bbs)
pred_cls_per_img = pred_cls.split(num_bbs)
all_scores_per_img = all_scores.split(num_bbs)
# per-class NMS
if self.clip_crop_region_type == "GT":
image_shapes = [x['instances']._image_size for x in batched_inputs]
bbs = [bb.to(self.device) for bb in bbs]
pred_instances, _ = fast_rcnn_inference(bbs, all_scores_per_img, image_shapes, \
self.test_score_thresh, self.test_nms_thresh, self.test_topk_per_image)
results = pred_instances
# results = []
# for r_i, (b_input, bb, sc, prd) in enumerate(zip(batched_inputs, bbs, scores_per_img, pred_cls_per_img)):
# this_result = copy.deepcopy(b_input["instances"]) # Instance
# if self.clip_crop_region_type == "GT":
# result_boxes = this_result._fields['gt_boxes'].to(self.device)
# elif self.clip_crop_region_type == "RPN": # directly use RPN boxes without per-class NMS
# result_boxes = bb # result_boxes = Boxes(bb)
# this_result._fields = {'pred_boxes': result_boxes, 'scores': sc, 'pred_classes': prd}
# results.append(this_result)
# sanity check: GT boxes + GT classes
# results = []
# for b_input in batched_inputs:
# this_result = copy.deepcopy(b_input["instances"]) # Instance
# gt_boxes = this_result._fields['gt_boxes'].to(self.device)
# gt_cls = this_result._fields['gt_classes'].to(self.device)
# this_result._fields = {'pred_boxes': gt_boxes, 'scores': torch.ones(gt_cls.size(0)).to(self.device), 'pred_classes': gt_cls}
# #this_result._fields = {'pred_boxes': gt_boxes, 'scores': sc, 'pred_classes': prd}
# results.append(this_result)
elif self.clip_crop_region_type == "RPN":
image_shapes = [x.image_size for x in proposals]
pred_instances, _ = fast_rcnn_inference(bbs, all_scores_per_img, image_shapes, \
self.test_score_thresh, self.test_nms_thresh, self.test_topk_per_image)
results = pred_instances
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
return CLIPRCNN._postprocess(results, batched_inputs)
else:
return results
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Normalize, pad and batch the input images. Use detectron2 default processing (pixel mean & std).
Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.detectron_pixel_mean) / self.detectron_pixel_std for x in images]
images = ImageList.from_tensors(images, self.offline_backbone.size_divisibility)
return images
def preprocess_image_crop(self, batched_inputs: List[Dict[str, torch.Tensor]], rpn_proposals=None, max_num_rpn=1000):
"""
Crop image regions based on GT or RPN boxes with different scales.
Then apply CLIP tranformation: resizing / cropping the regions into square shape (224 * 224).
Followed by the default preprocessing in Detectron2 as follows.
Normalize, pad and batch the input images.
"""
def clip_crop_region(image, box, scales=(1.0, 1.5)):
"""Crop image regions based on given boxes. Return different scales of region crops. (3 hrs)"""
img_h, img_w = image.size(1), image.size(2)
x1, y1, x2, y2 = list(box)
assert x1 < x2 and y1 < y2 and x2 < (img_w + 1) and y2 < (img_h + 1)
x_center = (x1 + x2) / 2.0
y_center = (y1 + y2) / 2.0
half_w = x_center - x1
half_h = y_center - y1
regions = []
for scale in scales: # get region coordinates
r_y1 = int(max(0, (y_center - half_h * scale).item()))
r_y2 = int(min(img_h, (y_center + half_h * scale).item()))
r_x1 = int(max(0, (x_center - half_w * scale).item()))
r_x2 = int(min(img_w, (x_center + half_w * scale).item()))
# sanity check
if r_y2 - r_y1 <= 1:
r_y2 = int(min(img_h, r_y2 + 2))
if r_y2 - r_y1 <= 1:
r_y1 = int(max(0, r_y1 - 2))
if r_x2 - r_x1 <= 1:
r_x2 = int(min(img_w, r_x2 + 2))
if r_x2 - r_x1 <= 1:
r_x1 = int(max(0, r_x1 - 2))
regions.append(image[:, r_y1:r_y2, r_x1:r_x2])
return regions
def clip_square_crop(image, box, scales=(1.0,)):
"""Crop image regions based on given boxes. Ensure square region as much as possible. (1.75 hrs)"""
img_h, img_w = image.size(1), image.size(2)
x1, y1, x2, y2 = list(box)
assert x1 < x2 and y1 < y2 and x2 < (img_w + 1) and y2 < (img_h + 1)
x_center = (x1 + x2) / 2.0
y_center = (y1 + y2) / 2.0
half_w = x_center - x1
half_h = y_center - y1
square_side = max(half_w, half_h)
half_w = square_side
half_h = square_side
regions = []
for scale in scales: # get region coordinates
if square_side * square_side < 2500: # crop larger context area for tiny objects
scale = 1.5 if scale == 1.0 else 4.0
# elif square_side * square_side > 90000: # crop exact area for large objects
# scale = 1.0 if scale == 1.0 else 1.1
r_y1 = int(max(0, (y_center - half_h * scale).item()))
r_y2 = int(min(img_h, (y_center + half_h * scale).item()))
r_x1 = int(max(0, (x_center - half_w * scale).item()))
r_x2 = int(min(img_w, (x_center + half_w * scale).item()))
# sanity check
if r_y2 - r_y1 <= 1:
r_y2 = int(min(img_h, r_y2 + 2))
if r_y2 - r_y1 <= 1:
r_y1 = int(max(0, r_y1 - 2))
if r_x2 - r_x1 <= 1:
r_x2 = int(min(img_w, r_x2 + 2))
if r_x2 - r_x1 <= 1:
r_x1 = int(max(0, r_x1 - 2))
#regions.append(image[:, r_y1:r_y2, r_x1:r_x2])
# if the cropped image isn't square (due to image boundaries), pad the cropped region
crop_image = image[:, r_y1:r_y2, r_x1:r_x2]
r_h, r_w = crop_image.size(1), crop_image.size(2)
pad_image = torch.zeros((3, int(2 * half_h.item() * scale) + 4 , int(2 * half_w.item() * scale) + 4)) #.fill_(torch.mean(crop_image.float()))
p_h, p_w = pad_image.size(1), pad_image.size(2)
pad_image[:, int(((p_h - r_h) / 2)):int(((p_h - r_h) / 2 + r_h)), int(((p_w - r_w) / 2)):int(((p_w - r_w) / 2 + r_w))] = crop_image
regions.append(pad_image.type(torch.uint8))
return regions
def vis_crop(f_n, images):
"""visualize the crop regions to diagnose the accuracy."""
if f_n not in ['datasets/coco/train2017/000000008691.jpg']:
for p_i, pad_image in enumerate(images):
to_save = pad_image.permute(1, 2, 0).numpy()
to_save = Image.fromarray(np.array(to_save, np.uint8))
to_save.save("output/regions/" + f_n.split("/")[-1].split(".")[0] + "-{}.png".format(p_i))
pass
# crop image region
images = []
bbs = []
num_bbs = []
for img_i, b_input in enumerate(batched_inputs):
this_img = b_input["image"]
if self.clip_crop_region_type == "GT":
this_boxes = b_input["instances"]._fields['gt_boxes'].tensor # variant #bbox (eg, max 759), might lead to OOM
elif self.clip_crop_region_type == "RPN":
this_boxes = rpn_proposals[img_i]._fields['proposal_boxes'].tensor[:max_num_rpn]
bbs.append(this_boxes)
num_bbs.append(this_boxes.size(0))
for this_box in this_boxes:
#images.extend(clip_crop_region(this_img, this_box, self.region_crop_scales))
images.extend(clip_square_crop(this_img, this_box, self.region_crop_scales))
#vis_crop(batched_inputs[0]['file_name'], images)
images = [self.clip_resize(x) for x in images]
images = [self.clip_center_crop(x) for x in images]
images = [x.to(self.device) for x in images]
if self.div_pixel:
images = [((x / 255.0) - self.pixel_mean) / self.pixel_std for x in images]
else:
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.clip_backbone.size_divisibility) # batch images into single tensor by padding to same size
return images, bbs, num_bbs
@staticmethod
def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Rescale the output instances to the target size.
"""
# note: private function; subject to changes
processed_results = []
for results_per_image, input_per_image in zip(
instances, batched_inputs):
height = input_per_image["height"] # original image size, before resizing
width = input_per_image["width"] # original image size, before resizing
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
def inference_on_cifar(self, pseudo_input):
""" Evaluate recoginition accuracy on CIFAR-10 for sanity check """
# get the label prompt, and use CLIP.encode_text() to compute text emb only once
cifar_cls_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
input_ids = pre_tokenize(cifar_cls_names)
num_cls = input_ids.size(0)
input_ids_flat = input_ids.view(-1, input_ids.size(2))
input_ids_flat = input_ids_flat.to(self.device)
clss_emb_all = self.clip_backbone.encode_text(input_ids_flat)
clss_emb_all = clss_emb_all.view(num_cls, self.num_prompt, -1)
clss_emb_all = clss_emb_all.mean(1)
clss_emb_all = F.normalize(clss_emb_all, p=2.0, dim=1) # [#cls, emb_dim]
# dataset loads images and labels
testset = torchvision.datasets.CIFAR10(root='./datasets', train=False,
download=False, transform=None)
# testloader = torch.utils.data.DataLoader(testset, batch_size=4,
# shuffle=False, num_workers=0)
# inference on each image and calculate accuracy
correct = 0
wrong = 0
for idx, inputs in enumerate(testset):
if idx % 1000 == 0:
print(idx)
# preprocess images
raw_image, label = inputs
image = np.array(raw_image) # [h, w, 3]
image = torch.from_numpy(image)
image = image.permute(2, 0, 1) # [3, h, w]
images = [image]
images = [self.clip_resize(x) for x in images]
images = [self.clip_center_crop(x) for x in images]
images = [x.to(self.device) for x in images]
if self.div_pixel:
images = [((x / 255.0) - self.pixel_mean) / self.pixel_std for x in images]
else:
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
# get image embedding
img_emb = self.clip_backbone.encode_image(images[0].unsqueeze(0))
img_emb = img_emb.view(-1, 1, img_emb.size(1))
img_emb = torch.sum(img_emb, dim=1) # ensemble different scales for each region
img_emb = F.normalize(img_emb, p=2.0, dim=1)
# cosine similarity as logits
all_scores = torch.mm(img_emb, clss_emb_all.T)
scores, pred_cls = torch.max(all_scores, dim=1) # Note: [0, #cls-1] representing the categories. The value #cls represents "background".
pred_cls = pred_cls.item()
if pred_cls == label:
correct += 1
else:
wrong += 1
print("\n\nGot correct {} and wrong {}. Accuracy is {} / {} = {}\n\n".format(correct,wrong,correct,correct+wrong,correct/(correct+wrong)))
return
@META_ARCH_REGISTRY.register()
class CLIPFastRCNN(nn.Module):
"""
CLIP in Fast R-CNN format, where the cropping is conducted on feature maps instead of raw images.
It contains the following two components:
1. Localization modules: pretrained backbone+RPN or equivalent modules and is able to output object proposals
2. Recognition branch: initialized by CLIP and is able to recognize zero-shot regions
"""
@configurable
def __init__(
self,
*,
offline_backbone: Backbone,
backbone: Backbone,
backbone_type: str = "resnet",
text_backbone: Backbone,
offline_proposal_generator: nn.Module,
roi_heads: nn.Module,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
input_format: Optional[str] = None,
vis_period: int = 0,
clip_crop_region_type: str = 'GT',
use_clip_c4: False,
use_clip_attpool: False,
offline_input_format: Optional[str] = None,
offline_pixel_mean: Tuple[float],
offline_pixel_std: Tuple[float],
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
proposal_generator: a module that generates proposals using backbone features
roi_heads: a ROI head that performs per-region computation
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
input_format: describe the meaning of channels of input. Needed by visualization
vis_period: the period to run visualization. Set to 0 to disable.
"""
super().__init__()
self.offline_backbone = offline_backbone
self.backbone = backbone
self.backbone_type = backbone_type
self.offline_proposal_generator = offline_proposal_generator
self.roi_heads = roi_heads
self.lang_encoder = text_backbone
self.input_format = input_format
self.vis_period = vis_period
if vis_period > 0:
assert input_format is not None, "input_format is required for visualization!"
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
assert (
self.pixel_mean.shape == self.pixel_std.shape
), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
if np.sum(pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
assert input_format == 'RGB'
self.div_pixel = True
else: # default setting
self.div_pixel = False
# input format, pixel mean and std for offline modules
if offline_input_format and offline_pixel_mean and offline_pixel_std:
self.offline_input_format = offline_input_format
self.register_buffer("offline_pixel_mean", torch.tensor(offline_pixel_mean).view(-1, 1, 1), False)
self.register_buffer("offline_pixel_std", torch.tensor(offline_pixel_std).view(-1, 1, 1), False)
if np.sum(offline_pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
assert offline_input_format == 'RGB'
self.offline_div_pixel = True
else: # default setting
self.offline_div_pixel = False
self.clip_crop_region_type = clip_crop_region_type
self.use_clip_c4 = use_clip_c4 # if True, use C4 mode where roi_head uses the last resnet layer from backbone
self.use_clip_attpool = use_clip_attpool # if True (C4+text_emb_as_classifier), use att_pool to replace default mean pool
@classmethod
def from_config(cls, cfg):
if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN": # create isolated backbone & RPN
# create offline cfg for the pretrained backbone & RPN
from detectron2.config import get_cfg
offline_cfg = get_cfg()
offline_cfg.merge_from_file(cfg.MODEL.CLIP.OFFLINE_RPN_CONFIG)
if cfg.MODEL.CLIP.OFFLINE_RPN_LSJ_PRETRAINED: # large-scale jittering (LSJ) pretrained RPN
offline_cfg.MODEL.BACKBONE.FREEZE_AT = 0 # make all fronzon layers to "SyncBN"
offline_cfg.MODEL.RESNETS.NORM = "SyncBN" # 5 resnet layers
offline_cfg.MODEL.FPN.NORM = "SyncBN" # fpn layers
offline_cfg.MODEL.RPN.CONV_DIMS = [-1, -1] # rpn layers
if cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH:
offline_cfg.MODEL.RPN.NMS_THRESH = cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH # 0.9
# create offline backbone and RPN
offline_backbone = build_backbone(offline_cfg) # build_resnet_fpn_backbone(cfg, ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)))
offline_rpn = build_proposal_generator(offline_cfg, offline_backbone.output_shape())
# convert to evaluation mode
for p in offline_backbone.parameters(): p.requires_grad = False
for p in offline_rpn.parameters(): p.requires_grad = False
offline_backbone.eval()
offline_rpn.eval()
elif cfg.MODEL.CLIP.CROP_REGION_TYPE == "GT":
offline_backbone = None
offline_rpn = None
offline_cfg = None
backbone = build_backbone(cfg)
text_backbone = build_clip_language_encoder(cfg)
backbone_type = "swin" if "swin" in cfg.MODEL.BACKBONE.NAME else "resnet"
if backbone_type == "swin":
roi_heads = build_roi_heads(cfg, backbone.image_encoder.output_shape())
else:
roi_heads = build_roi_heads(cfg, backbone.output_shape())
return {
"offline_backbone": offline_backbone,
"offline_proposal_generator": offline_rpn,
"backbone": backbone,
"backbone_type": backbone_type,
"text_backbone": text_backbone,
"roi_heads": roi_heads,
"input_format": cfg.INPUT.FORMAT,
"vis_period": cfg.VIS_PERIOD,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
"clip_crop_region_type" : cfg.MODEL.CLIP.CROP_REGION_TYPE,
"use_clip_c4": 'FPN' not in cfg.MODEL.BACKBONE.NAME,
"use_clip_attpool": cfg.MODEL.ROI_HEADS.NAME in ['CLIPRes5ROIHeads', 'CLIPStandardROIHeads'] and cfg.MODEL.CLIP.USE_TEXT_EMB_CLASSIFIER,
"offline_input_format": offline_cfg.INPUT.FORMAT if offline_cfg else None,
"offline_pixel_mean": offline_cfg.MODEL.PIXEL_MEAN if offline_cfg else None,
"offline_pixel_std": offline_cfg.MODEL.PIXEL_STD if offline_cfg else None,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, queries, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* image: Tensor, image in (C, H, W) format.
* instances (optional): groundtruth :class:`Instances`
* proposals (optional): :class:`Instances`, precomputed proposals.
Other information that's included in the original dicts, such as:
* "height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
list[dict]:
Each dict is the output for one input image.
The dict contains one key "instances" whose value is a :class:`Instances`.
The :class:`Instances` object has the following keys:
"pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
"""
if not self.training:
return self.inference(queries, batched_inputs)
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
else:
gt_instances = None
# localization branch: offline modules to get the region proposals
with torch.no_grad():
if self.clip_crop_region_type == "GT": # from ground-truth
proposals = []
for r_i, b_input in enumerate(batched_inputs):
this_gt = copy.deepcopy(b_input["instances"]) # Instance
gt_boxes = this_gt._fields['gt_boxes'].to(self.device)
this_gt._fields = {'proposal_boxes': gt_boxes, 'objectness_logits': torch.ones(gt_boxes.tensor.size(0)).to(self.device)}
proposals.append(this_gt)
elif self.clip_crop_region_type == "RPN": # from the backbone & RPN of standard Mask-RCNN, trained on base classes
if self.offline_backbone.training or self.offline_proposal_generator.training: # was set to True in training script
self.offline_backbone.eval()
self.offline_proposal_generator.eval()
images = self.offline_preprocess_image(batched_inputs)
features = self.offline_backbone(images.tensor)
if self.offline_proposal_generator is not None:
proposals, _ = self.offline_proposal_generator(images, features, None)
# recognition branch: get 2D feature maps using the backbone of recognition branch
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
if self.backbone_type == "resnet":
head = self.backbone.layer4
elif self.backbone_type == "swin":
head = self.backbone.layers[-1]
# Given the proposals, crop region features from 2D image features and classify the regions
if self.use_clip_c4: # use C4 + resnet weights from CLIP
if self.use_clip_attpool: # use att_pool from CLIP to match dimension
_, detector_losses = self.roi_heads(images, features, proposals, gt_instances, res5=head, attnpool=self.backbone.attnpool)
else: # use default mean pool
_, detector_losses = self.roi_heads(images, features, proposals, gt_instances, res5=head)
else: # default setting
if self.use_clip_attpool: # use att_pool from CLIP to match dimension
_, detector_losses = self.roi_heads(images, features, proposals, gt_instances, attnpool=self.backbone.bottom_up.attnpool)
else: # use default mean pool
_, detector_losses = self.roi_heads(images, features, proposals, gt_instances)
if self.vis_period > 0:
storage = get_event_storage()
if storage.iter % self.vis_period == 0:
self.visualize_training(batched_inputs, proposals)
#visualize_proposals(batched_inputs, proposals, self.input_format)
losses = {}
losses.update(detector_losses)
return losses
def inference(
self,
queries,
batched_inputs: List[Dict[str, torch.Tensor]],
detected_instances: Optional[List[Instances]] = None,
do_postprocess: bool = True,
):
"""
Run inference on the given inputs.
Args:
batched_inputs (list[dict]): same as in :meth:`forward`
detected_instances (None or list[Instances]): if not None, it
contains an `Instances` object per image. The `Instances`
object contains "pred_boxes" and "pred_classes" which are
known boxes in the image.
The inference will then skip the detection of bounding boxes,
and only predict other per-ROI outputs.
do_postprocess (bool): whether to apply post-processing on the outputs.
Returns:
When do_postprocess=True, same as in :meth:`forward`.
Otherwise, a list[Instances] containing raw network outputs.
"""
assert not self.training
# localization branch: offline modules to get the region proposals
if self.clip_crop_region_type == "GT": # from ground-truth
proposals = []
for r_i, b_input in enumerate(batched_inputs):
this_gt = copy.deepcopy(b_input["instances"]) # Instance
gt_boxes = this_gt._fields['gt_boxes'].to(self.device)
this_gt._fields = {'proposal_boxes': gt_boxes} #, 'objectness_logits': None}
proposals.append(this_gt)
elif self.clip_crop_region_type == "RPN": # from the backbone & RPN of standard Mask-RCNN, trained on base classes
images = self.offline_preprocess_image(batched_inputs)
features = self.offline_backbone(images.tensor)
if detected_instances is None:
if self.offline_proposal_generator is not None:
proposals, _ = self.offline_proposal_generator(images, features, None)
# recognition branch: get 2D feature maps using the backbone of recognition branch
print(batched_inputs[0]['image'][0][:10, :10])
print(batched_inputs[0]['image'].shape)
images = self.preprocess_image(batched_inputs)
if self.backbone_type == "swin":
features = self.backbone.encode_image(images.tensor)
text_features = self.backbone.encode_text(queries)
else:
features = self.backbone(images.tensor)
token_embeddings = pre_tokenize([queries])[:, 0].to(images.tensor.device)
text_features = self.lang_encoder.encode_text(token_embeddings)
if self.backbone_type == "resnet":
head = self.backbone.layer4
downsampler = None
norm = None
vision_projection = None
elif self.backbone_type == "swin":
downsampler = self.backbone.image_encoder.layers[-2].downsample
head = self.backbone.image_encoder.layers[-1]
norm = self.backbone.image_encoder.norm
vision_projection = self.backbone.image_projection
# Given the proposals, crop region features from 2D image features and classify the regions
if self.use_clip_c4: # use C4 + resnet weights from CLIP
if self.use_clip_attpool: # use att_pool from CLIP to match dimension
results, _ = self.roi_heads(images, features, proposals, text_features, None,
res5=head, ds=downsampler, norm=norm, vision_projection=vision_projection, attnpool=self.backbone.attnpool)
else: # use default mean pool
results, _ = self.roi_heads(images, features, proposals, text_features, None,
res5=head, ds=downsampler, norm=norm, vision_projection=vision_projection)
else: # default setting
if self.use_clip_attpool: # use att_pool from CLIP to match dimension
results, _ = self.roi_heads(images, features, proposals, text_features, None,
attnpool=self.backbone.bottom_up.attnpool)
else:
results, _ = self.roi_heads(images, features, proposals, text_features, None)
visualize_proposals(batched_inputs, proposals, self.input_format)
vis = visualize_results(batched_inputs, results, self.input_format)
return vis
def offline_preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Normalize, pad and batch the input images. Use detectron2 default processing (pixel mean & std).
Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
if (self.input_format == 'RGB' and self.offline_input_format == 'BGR') or \
(self.input_format == 'BGR' and self.offline_input_format == 'RGB'): # the input image follows the main config format ('RGB' or 'BGR')
images = [x[[2,1,0],:,:] for x in images]
if self.offline_div_pixel:
images = [((x / 255.0) - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
else:
images = [(x - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
images = ImageList.from_tensors(images, self.offline_backbone.size_divisibility)
return images
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Normalize, pad and batch the input images. Use CLIP default processing (pixel mean & std).
Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
if self.div_pixel:
images = [((x / 255.0) - self.pixel_mean) / self.pixel_std for x in images]
else:
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.backbone.size_divisibility)
return images
@staticmethod
def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Rescale the output instances to the target size.
"""
# note: private function; subject to changes
processed_results = []
for results_per_image, input_per_image in zip(
instances, batched_inputs):
height = input_per_image["height"] # original image size, before resizing
width = input_per_image["width"] # original image size, before resizing
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
@META_ARCH_REGISTRY.register()
class PretrainFastRCNN(nn.Module):
"""
Open-vocabulary region representation via vision-language pretraining from image-text pairs
1. image-text level matching: weakly supervised grounding task with contrastive learning based on region-token representation
2. region-token level matching: use pseudo text to train model, provided by teacher model
"""
@configurable
def __init__(
self,
*,
offline_backbone: Backbone,
backbone: Backbone,
offline_proposal_generator: nn.Module,
roi_heads: nn.Module,
teacher_backbone: nn.Module,
teacher_roi_heads: nn.Module,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
input_format: Optional[str] = None,
vis_period: int = 0,
clip_crop_region_type: str = 'GT',
use_clip_c4: False,
use_clip_attpool: False,
offline_input_format: Optional[str] = None,
offline_pixel_mean: Tuple[float],
offline_pixel_std: Tuple[float],
language_encoder: nn.Module,
matching_temp: None,
num_regions_per_img: int = 0,
img_txt_level: None,
gather_gpus: False,
grid_regions: False,
concept_emb: None,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
proposal_generator: a module that generates proposals using backbone features
roi_heads: a ROI head that performs per-region computation
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
input_format: describe the meaning of channels of input. Needed by visualization
vis_period: the period to run visualization. Set to 0 to disable.
"""
super().__init__()
self.offline_backbone = offline_backbone
self.backbone = backbone
self.offline_proposal_generator = offline_proposal_generator
self.roi_heads = roi_heads
self.input_format = input_format
self.vis_period = vis_period
if vis_period > 0:
assert input_format is not None, "input_format is required for visualization!"
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
assert (
self.pixel_mean.shape == self.pixel_std.shape
), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
if np.sum(pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
assert input_format == 'RGB'
self.div_pixel = True
else: # default setting
self.div_pixel = False
# input format, pixel mean and std for offline modules
if offline_input_format and offline_pixel_mean and offline_pixel_std:
self.offline_input_format = offline_input_format
self.register_buffer("offline_pixel_mean", torch.tensor(offline_pixel_mean).view(-1, 1, 1), False)
self.register_buffer("offline_pixel_std", torch.tensor(offline_pixel_std).view(-1, 1, 1), False)
if np.sum(offline_pixel_mean) < 3.0: # converrt pixel value to range [0.0, 1.0] by dividing 255.0
assert offline_input_format == 'RGB'
self.offline_div_pixel = True
else: # default setting
self.offline_div_pixel = False
self.clip_crop_region_type = clip_crop_region_type
self.use_clip_c4 = use_clip_c4 # if True, use C4 mode where roi_head uses the last resnet layer from backbone
self.use_clip_attpool = use_clip_attpool # if True (C4+text_emb_as_classifier), use att_pool to replace default mean pool
# image-text level pretraining
self.img_txt_level = img_txt_level[0]
self.only_eot = img_txt_level[1]
if self.img_txt_level:
self.lang_encoder = language_encoder
for p in self.lang_encoder.parameters(): # freeze language encoder
p.requires_grad = False
if matching_temp > 0.0: # fixed temp
self.matching_temp = matching_temp
else: # leanable temp
self.matching_temp = nn.Parameter(torch.ones([]) * 4.6052) # nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.context_length = 77 # defined in clip_img_txt_pair_tsv class
self.num_regions_per_img = num_regions_per_img
self.gather_gpus = gather_gpus
self.grid_regions = grid_regions
# region-token level pretraining
if concept_emb[0]:
self.register_buffer("concept_emb", torch.load(concept_emb[0]), False) # [#concepts, 1024]
self.concept_thres = concept_emb[1]
self.teacher_backbone = teacher_backbone # None
# when resume, create teacher model in advance to load ckpt
# self.teacher_backbone = copy.deepcopy(self.backbone)
# # # oai_clip = torch.load("/mnt/output_storage/trained_models/oai_clip_weights/RN50_OAI_CLIP.pth") #("/home/v-yiwuzhong/projects/azureblobs/vyiwuzhong_phillytools/trained_models/oai_clip_weights/RN50_OAI_CLIP.pth")
# # # oai_clip_visual = {}
# # # for key in oai_clip['model']:
# # # if 'visual' in key and 'num_batches_tracked' not in key:
# # # oai_clip_visual[key.replace('visual.','')] = oai_clip['model'][key]
# # # self.teacher_backbone.load_state_dict(oai_clip_visual)
for p in self.teacher_backbone.parameters(): # freeze visual encoder of teacher model
p.requires_grad = False
if concept_emb[2] is None: # teacher model uses the same concept embedding as student model
self.register_buffer("teacher_concept_emb", torch.load(concept_emb[0]), False)
else: # teacher model uses a seperate concept embedding
self.register_buffer("teacher_concept_emb", torch.load(concept_emb[2]), False)
self.teacher_roi_heads = teacher_roi_heads
else:
self.concept_emb = None
@classmethod
def from_config(cls, cfg):
if cfg.MODEL.CLIP.CROP_REGION_TYPE == "RPN": # create isolated backbone & RPN
# create offline cfg for the pretrained backbone & RPN
from detectron2.config import get_cfg
offline_cfg = get_cfg()
offline_cfg.merge_from_file(cfg.MODEL.CLIP.OFFLINE_RPN_CONFIG)
if cfg.MODEL.CLIP.OFFLINE_RPN_LSJ_PRETRAINED: # large-scale jittering (LSJ) pretrained RPN
offline_cfg.MODEL.BACKBONE.FREEZE_AT = 0 # make all fronzon layers to "SyncBN"
offline_cfg.MODEL.RESNETS.NORM = "SyncBN" # 5 resnet layers
offline_cfg.MODEL.FPN.NORM = "SyncBN" # fpn layers
offline_cfg.MODEL.RPN.CONV_DIMS = [-1, -1] # rpn layers
if cfg.MODEL.CLIP.PRETRAIN_RPN_REGIONS:
offline_cfg.MODEL.RPN.POST_NMS_TOPK_TEST = cfg.MODEL.CLIP.PRETRAIN_RPN_REGIONS
if cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH:
offline_cfg.MODEL.RPN.NMS_THRESH = cfg.MODEL.CLIP.OFFLINE_RPN_NMS_THRESH # 0.9
# offline_cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.6
# print("\n\n Set offline RPN.NMS_THRESH to {} and ROI_HEADS.NMS_THRESH_TEST to {}.\n\n".format(offline_cfg.MODEL.RPN.NMS_THRESH, offline_cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST))
# create offline backbone and RPN
offline_backbone = build_backbone(offline_cfg) # build_resnet_fpn_backbone(cfg, ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)))
offline_rpn = build_proposal_generator(offline_cfg, offline_backbone.output_shape())
# convert to evaluation mode
for p in offline_backbone.parameters(): p.requires_grad = False
for p in offline_rpn.parameters(): p.requires_grad = False
offline_backbone.eval()
offline_rpn.eval()
elif cfg.MODEL.CLIP.CROP_REGION_TYPE in ["GLOBAL", "GRID", "RANDOM"]:
offline_backbone = None
offline_rpn = None
offline_cfg = None
# visual encoder and roi_heads of student model
backbone = build_backbone(cfg)
if "swin" in cfg.MODEL.BACKBONE.NAME:
roi_heads = build_roi_heads(cfg, backbone.image_encoder.output_shape())
else:
roi_heads = build_roi_heads(cfg, backbone.output_shape())
# language encoder of student model
language_encoder = build_clip_language_encoder(cfg)
# visual encoder of teacher model
teacher_cfg = copy.deepcopy(cfg)
teacher_cfg.defrost()
teacher_cfg.MODEL.RESNETS.DEPTH = teacher_cfg.MODEL.CLIP.TEACHER_RESNETS_DEPTH
teacher_backbone = build_backbone(teacher_cfg)
teacher_cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = teacher_cfg.MODEL.CLIP.TEACHER_POOLER_RESOLUTION
teacher_roi_heads = build_roi_heads(teacher_cfg, teacher_backbone.output_shape())
return {
"offline_backbone": offline_backbone,
"offline_proposal_generator": offline_rpn,
"backbone": backbone,
"roi_heads": roi_heads,
"teacher_backbone": teacher_backbone,
"teacher_roi_heads": teacher_roi_heads,
"input_format": cfg.INPUT.FORMAT,
"vis_period": cfg.VIS_PERIOD,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
"clip_crop_region_type" : cfg.MODEL.CLIP.CROP_REGION_TYPE,
"use_clip_c4": 'FPN' not in cfg.MODEL.BACKBONE.NAME,
"use_clip_attpool": cfg.MODEL.ROI_HEADS.NAME == 'PretrainRes5ROIHeads',
"offline_input_format": offline_cfg.INPUT.FORMAT if offline_cfg else None,
"offline_pixel_mean": offline_cfg.MODEL.PIXEL_MEAN if offline_cfg else None,
"offline_pixel_std": offline_cfg.MODEL.PIXEL_STD if offline_cfg else None,
"language_encoder": language_encoder,
"matching_temp": cfg.MODEL.CLIP.CLSS_TEMP,
"num_regions_per_img": cfg.MODEL.CLIP.PRETRAIN_SAMPLE_REGIONS,
"img_txt_level": (cfg.MODEL.CLIP.PRETRAIN_IMG_TXT_LEVEL, cfg.MODEL.CLIP.PRETRAIN_ONLY_EOT),
"gather_gpus": cfg.MODEL.CLIP.GATHER_GPUS,
"grid_regions": cfg.MODEL.CLIP.GRID_REGIONS,
"concept_emb": (cfg.MODEL.CLIP.CONCEPT_POOL_EMB, cfg.MODEL.CLIP.CONCEPT_THRES, cfg.MODEL.CLIP.TEACHER_CONCEPT_POOL_EMB),
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* image: Tensor, image in (C, H, W) format.
* instances (optional): groundtruth :class:`Instances`
* proposals (optional): :class:`Instances`, precomputed proposals.
Other information that's included in the original dicts, such as:
* "height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
list[dict]:
Each dict is the output for one input image.
The dict contains one key "instances" whose value is a :class:`Instances`.
The :class:`Instances` object has the following keys:
"pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
"""
if not self.training:
return self.inference(batched_inputs)
if self.concept_emb is not None and self.teacher_backbone is None: # create a teacher model from an initialized student model; if resume, simply comment out this section
self.teacher_backbone = copy.deepcopy(self.backbone)
for p in self.teacher_backbone.parameters(): # freeze visual encoder of teacher model
p.requires_grad = False
gt_instances = None
losses = {}
# localization branch: offline modules to get the region proposals
proposals = self.get_region_proposals(batched_inputs)
global_proposals = self.create_global_proposals(batched_inputs)
# for prop, g_prop in zip(proposals, global_proposals): # append global proposal into each image
# prop.proposal_boxes.tensor = torch.cat((prop.proposal_boxes.tensor, g_prop.tensor), dim=0)
# recognition branch: get 2D feature maps using the backbone of recognition branch
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
region_feats = self.get_region_features(images, features, proposals, gt_instances)
global_feats = self.get_region_features(images, features, global_proposals, gt_instances)
# image-text level matching
if self.img_txt_level:
self.image_text_matching(batched_inputs, proposals, region_feats, losses, global_feats=global_feats, only_global=True)
# region-phrase level matching
if len(batched_inputs[0]) > 6: # controlled by dataset loading
phrase_text_embs = self.encode_phrase_text(batched_inputs)
else:
phrase_text_embs = None
# region-concept level matching
if self.concept_emb is not None:
self.region_concept_matching(images, proposals, gt_instances, region_feats, losses, phrase_embs=phrase_text_embs)
return losses
def encode_phrase_text(self, batched_inputs):
text = [x[6].view(-1,self.context_length).to(self.device) for i, x in enumerate(batched_inputs)]
text = torch.cat(text, dim=0)
text_embs = self.lang_encoder.encode_text(text, only_eot=True) # [#phrases, transformer.width]
return text_embs
def region_concept_matching(self, images, proposals, gt_instances, region_feats, losses, phrase_embs=None):
use_distill = True
use_contrastive = True
# get psuedo concept labels from teacher model
concept_scores, target_inds, keep_regions, target_embs, label_mtx, phrase_label_mtx, phrase_target_regions \
= self.get_psuedo_concept_labels(images, proposals, gt_instances, phrase_embs=phrase_embs)
# prepare region features for the kept regions
keep_region_feats = region_feats[keep_regions]
keep_region_feats = keep_region_feats / keep_region_feats.norm(dim=-1, keepdim=True)
if use_distill:
# distillation learning: learns from the predictions of teacher model
concept_emb = self.concept_emb / self.concept_emb.norm(dim=-1, keepdim=True)
cls_scores = keep_region_feats @ concept_emb.t() # [#kept_regions, #concepts]
if isinstance(self.matching_temp, float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
cls_scores_temp = cls_scores / self.matching_temp
else:
cls_scores_temp = cls_scores * self.matching_temp.exp()
# loss weights
#rpn_weights = torch.cat([torch.sigmoid(p.objectness_logits) for p in proposals])[keep_regions]
#focal_weights = self.focal_scaling(cls_scores_temp, target_inds)
# calculate loss
cls_loss = F.kl_div(F.softmax(cls_scores_temp, dim=1).log(), concept_scores, reduction='batchmean') # input is log-probabilities, target is probabilities
#cls_loss = SoftTargetCrossEntropy()(cls_scores_temp, concept_scores)
#cls_loss = F.cross_entropy(cls_scores_temp, target_inds)
#cls_loss = (F.cross_entropy(cls_scores_temp, target_inds, reduction="none") * focal_weights).mean()
losses.update({"loss_region_distill": cls_loss}) # * 0.8})
if use_contrastive:
# contrastive learning: matching student visual features with target teacher concept embs
target_embs = target_embs / target_embs.norm(dim=-1, keepdim=True)
match_scores = keep_region_feats @ target_embs.t() # [#kept_regions, #kept_regions]
if isinstance(self.matching_temp, float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
match_scores_temp = match_scores / self.matching_temp
else:
match_scores_temp = match_scores * self.matching_temp.exp()
# loss weights
#rpn_weights = torch.cat([torch.sigmoid(p.objectness_logits) for p in proposals])[keep_regions]
#focal_weights = (1 - torch.sigmoid(torch.diag(match_scores_temp))) ** 0.8 # 1.0 # 2.0 #
# calculate loss given matching scores and label matrix
contrastive_loss = MILCrossEntropy()(match_scores_temp, label_mtx, weights=None, avg_positives=False) # SoftTargetCrossEntropy()(match_scores_temp, label_mtx)
#contrastive_loss = (MILCrossEntropy()(match_scores, label_mtx) + MILCrossEntropy()(match_scores.t(), label_mtx)) / 2.0
losses.update({"loss_concept_contrastive": contrastive_loss})
if phrase_embs is not None:
phrase_embs = phrase_embs / phrase_embs.norm(dim=-1, keepdim=True)
phrase_scores = phrase_embs @ phrase_target_regions.t()
if isinstance(self.matching_temp, float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
phrase_scores_temp = phrase_scores / self.matching_temp
else:
phrase_scores_temp = phrase_scores * self.matching_temp.exp()
contrastive_loss = MILCrossEntropy()(phrase_scores_temp, phrase_label_mtx, weights=None, avg_positives=False)
#contrastive_loss = SoftTargetCrossEntropy()(phrase_scores_temp, phrase_label_mtx)
losses.update({"loss_phrase_contrastive": contrastive_loss})
def image_text_matching(self, batched_inputs, proposals, region_feats, losses, global_feats=None, only_global=False):
# encode text
num_cap = int(batched_inputs[0][1].size(0) / self.context_length)
if num_cap == 1: # one caption per image
text = [x[1].view(1,-1).to(self.device) for x in batched_inputs]
else: # multiple caption pers image, then randomly pick one
rand_ind = [randint(0, num_cap-1) for _ in range(len(batched_inputs))]
text = [x[1].view(-1,self.context_length)[rand_ind[i]:rand_ind[i]+1].to(self.device) for i, x in enumerate(batched_inputs)]
text = torch.cat(text, dim=0)
text_embs = self.lang_encoder.encode_text(text, only_eot=self.only_eot) # [img_batch, n_ctx, transformer.width] or [img_batch, transformer.width]
eot_pos = text.argmax(dim=-1)
# prepare region features and text embeddings
if isinstance(proposals[0], Boxes):
num_bbs = [len(prop) for prop in proposals]
else:
num_bbs = [len(prop.proposal_boxes) for prop in proposals]
if global_feats is not None and only_global: # only global feature
assert self.only_eot
region_feats = global_feats
region_feats = region_feats / region_feats.norm(dim=-1, keepdim=True)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
num_bbs = [1 for _ in num_bbs]
elif global_feats is not None and not only_global: # combine both global and region features
assert self.only_eot
keep_num = 20
region_feats = region_feats.split(num_bbs)
region_feats = [torch.mean(rg_f, dim=0, keepdim=True) for rg_f in region_feats]
region_g_feats = [torch.cat((r_f[:keep_num], global_feats[i:i+1]), dim=0) for i, r_f in enumerate(region_feats)]
region_g_feats = [torch.mean(rg_f, dim=0, keepdim=True) for rg_f in region_g_feats]
region_g_feats = [rg_f / rg_f.norm(dim=-1, keepdim=True) for rg_f in region_g_feats]
region_feats = torch.cat(region_g_feats)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
num_bbs = [1 for _ in num_bbs]
else: # only region features
num_bbs = torch.tensor(num_bbs).long().to(self.device)
region_feats_full, min_bs = gather_tensors(region_feats) if self.gather_gpus else (region_feats, None) # gather across GPUs
text_embs_full, min_bs = gather_tensors(text_embs) if self.gather_gpus else (text_embs, None) # gather across GPUs
# matching visual features with text embs
match_scores = region_feats_full @ text_embs_full.view(-1, text_embs_full.size(-1)).t() # [#regions, img_batch * n_ctx]
if global_feats is not None: # only global feature or combine both global and region features
img_b = int(region_feats_full.size(0))
pooled_score = match_scores
else: # only region features
eot_pos_full, min_bs = gather_tensors(eot_pos) if self.gather_gpus else (eot_pos, None) # gather across GPUs
num_bbs_full, min_bs = gather_tensors(num_bbs) if self.gather_gpus else (num_bbs, None) # gather across GPUs
pooled_score = []
token_b = self.context_length
# region_b = self.num_regions_per_img if global_feats is None else 1
# img_b = int(region_feats_full.size(0) / region_b)
img_b = num_bbs_full.size(0)
rb_start = 0 # the starting index of regions
for i in range(img_b): # for each image
region_b = num_bbs_full[i].item()
for j in range(img_b): # for each text
if self.only_eot: # sentence level embs
# max pool over regions
this_s = torch.max(match_scores[rb_start:(rb_start+region_b), j:(j+1)], dim=0)[0]
else: # token level embs
# 3. softmax over regions as soft attention, then multiply attention with original logits, finally sum over matrix and divided by #tokens
# this_matrix = match_scores[rb_start:(rb_start+region_b), j*token_b:(j*token_b+eot_pos_full[j]+1)]
# this_att = F.softmax(this_matrix, dim=0)
# this_s = torch.sum(this_matrix * this_att) / (eot_pos_full[j]+1)
# 2. max pool over regions, and then avg over text tokens
# this_s = torch.sum(torch.max(match_scores[rb_start:(rb_start+region_b), j*token_b:(j*token_b+eot_pos_full[j]+1)], dim=0)[0]) / (eot_pos_full[j]+1)
# 1. max pool over regions, and then sum over text tokens
this_s = torch.sum(torch.max(match_scores[rb_start:(rb_start+region_b), j*token_b:(j*token_b+eot_pos_full[j]+1)], dim=0)[0])
pooled_score.append(this_s.view(1,1))
rb_start += region_b
assert rb_start == match_scores.size(0)
pooled_score = torch.cat(pooled_score).view(img_b, img_b) # diagnal elements are positive pairs and the others are negative pairs
if isinstance(self.matching_temp,float): # Typical good values are 100.0 for euclidean, 10.0 for dot, 0.01 for cosine
pooled_score = pooled_score / self.matching_temp
else:
pooled_score = pooled_score * self.matching_temp.exp()
contrast_target = torch.arange(img_b).to(self.device)
row_loss = F.cross_entropy(pooled_score, contrast_target)
col_loss = F.cross_entropy(pooled_score.t(), contrast_target)
losses.update({"loss_img_txt_level": (row_loss + col_loss) / 2.0}) # losses.update({"loss_img_txt_level": (row_loss + col_loss) / 4.0}) #
def focal_scaling(self, logits, targets, gamma=1.0):
p = F.softmax(logits, dim=1)
p_t = p[torch.arange(p.size(0)).to(p.device), targets] # get prob of target class
weights = (1 - p_t) ** gamma
return weights
def get_psuedo_concept_labels(self, images, proposals, gt_instances, s_temp=0.01, norm=True, phrase_embs=None):
""" Input images and region proposals, return matching results from teacher model
"""
with torch.no_grad():
# extract visual features from teacher model
features = self.teacher_backbone(images.tensor)
teacher_region_feats = self.teacher_roi_heads(images, features, proposals, gt_instances, res5=self.teacher_backbone.layer4, attnpool=self.teacher_backbone.attnpool)
# match teacher visual features with teacher concept embs to create pseudo labels
if norm:
teacher_region_feats = teacher_region_feats / teacher_region_feats.norm(dim=-1, keepdim=True)
teacher_concept_emb = self.teacher_concept_emb / self.teacher_concept_emb.norm(dim=-1, keepdim=True)
else:
teacher_concept_emb = self.teacher_concept_emb
concept_scores = teacher_region_feats @ teacher_concept_emb.t() # [#regions, #concepts]
concept_scores = F.softmax(concept_scores / s_temp, dim=1)
max_scores, max_inds = torch.max(concept_scores, dim=1)
keep_regions = max_scores > self.concept_thres # only keep the regions that have high matching score with a concept
if keep_regions.nonzero().size(0) == 0: # if all regions can't match to any concept
print("all regions can't match to any concept!")
keep_regions = max_scores > 0.0
target_inds = max_inds[keep_regions]
target_embs = self.concept_emb[target_inds] # the target embedding of student model
label_mtx = (target_inds.view(-1, 1) == target_inds.view(1, -1)).type_as(teacher_region_feats)
concept_scores = concept_scores[keep_regions]
# matching kept regions with phrase-text to create labels
if phrase_embs is None:
phrase_label_mtx = None
phrase_target_regions = None
else:
if norm:
phrase_embs = phrase_embs / phrase_embs.norm(dim=-1, keepdim=True)
teacher_kept_feats = teacher_region_feats[keep_regions]
phrase_scores = phrase_embs @ teacher_kept_feats.t() # [#phrases, #keep regions]
phrase_scores = F.softmax(phrase_scores / s_temp, dim=1)
_, max_region_inds = torch.max(phrase_scores, dim=1)
phrase_label_mtx = (max_region_inds.view(-1, 1) == max_region_inds.view(1, -1)).type_as(teacher_region_feats)
phrase_target_regions = teacher_kept_feats[max_region_inds]
return concept_scores, target_inds, keep_regions, target_embs, label_mtx, phrase_label_mtx, phrase_target_regions
def get_region_features(self, images, features, proposals, gt_instances):
""" Input images and region proposals, return region features
"""
# Given the proposals, crop region features from 2D image features
if self.use_clip_c4: # use C4 + resnet weights from CLIP
if self.use_clip_attpool: # use att_pool from CLIP to match dimension
region_feats = self.roi_heads(images, features, proposals, gt_instances, res5=self.backbone.layer4, attnpool=self.backbone.attnpool)
else: # use default mean pool
region_feats = self.roi_heads(images, features, proposals, gt_instances, res5=self.backbone.layer4)
else: # default setting
region_feats = self.roi_heads(images, features, proposals, gt_instances)
return region_feats
def get_region_proposals(self, batched_inputs):
""" Given image, return object proposals
"""
if self.grid_regions: # use grid boxes
proposals = self.create_grid_boxes(batched_inputs)
else: # use object proposals
with torch.no_grad():
if self.clip_crop_region_type == "GLOBAL": # from a global box per image
proposals = self.create_global_proposals(batched_inputs)
elif self.clip_crop_region_type == "GRID": # from grid proposals
proposals = self.create_grid_boxes(batched_inputs)
elif self.clip_crop_region_type == "RANDOM": # from random proposals
proposals = self.create_rand_boxes(batched_inputs)
elif self.clip_crop_region_type == "RPN": # from the backbone & RPN of standard Mask-RCNN, trained on base classes
if self.offline_backbone.training or self.offline_proposal_generator.training: # was set to True in training script
self.offline_backbone.eval()
self.offline_proposal_generator.eval()
images = self.offline_preprocess_image(batched_inputs)
features = self.offline_backbone(images.tensor)
if self.offline_proposal_generator is not None:
proposals, _ = self.offline_proposal_generator(images, features, None)
#visualize_proposals(batched_inputs, proposals, self.input_format, vis_pretrain=True)
# randomly select proposals to avoid overfitting
if self.training:
#rand_inds = [torch.arange(len(p))[:self.num_regions_per_img].to(self.device) for p in proposals]
rand_inds = [torch.randperm(len(p))[:self.num_regions_per_img].to(self.device) for p in proposals]
proposals = [p[rand_inds[i]] for i, p in enumerate(proposals)]
return proposals
def offline_preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
NOTE: the image tsv in pretraining are already normalized pixel values and thus opposite to Detectron2 default input.
Normalize, pad and batch the input images. Use detectron2 default processing (pixel mean & std).
Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
"""
images = [x[0].to(self.device) for x in batched_inputs]
if (self.input_format == 'RGB' and self.offline_input_format == 'BGR') or \
(self.input_format == 'BGR' and self.offline_input_format == 'RGB'): # the input image follows the main config format ('RGB' or 'BGR')
images = [x[[2,1,0],:,:] for x in images]
if self.offline_div_pixel:
images = [(x - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
else:
images = [((x * 255.0) - self.offline_pixel_mean) / self.offline_pixel_std for x in images]
images = ImageList.from_tensors(images, self.offline_backbone.size_divisibility)
return images
def preprocess_image(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
NOTE: the image tsv in pretraining are already normalized pixel values and thus opposite to Detectron2 default input.
Normalize, pad and batch the input images. Use CLIP default processing (pixel mean & std).
Note: Due to FPN size_divisibility, images are padded by right/bottom border. So FPN is consistent with C4 and GT boxes.
"""
images = [x[0].to(self.device) for x in batched_inputs]
if self.div_pixel:
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
else:
images = [((x * 255.0) - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.backbone.size_divisibility)
return images
def create_rand_boxes(self, batched_inputs, grid_length=8):
""" create random boxes within an image, output random self.num_regions_per_img boxes
return a list of Boxes
"""
images = self.preprocess_image(batched_inputs)
image_height = images.tensor.size(2)
image_width = images.tensor.size(3)
left_top_x = torch.tensor([i*(grid_length) for i in range(image_width // grid_length)])
left_top_y = torch.tensor([i*(grid_length) for i in range(image_height // grid_length)])
right_bot_x = torch.tensor([(i+1)*(grid_length) for i in range(image_width // grid_length)])
right_bot_y = torch.tensor([(i+1)*(grid_length) for i in range(image_height // grid_length)])
x_inds = torch.randint(0, left_top_x.size(0), (self.num_regions_per_img,))
y_inds = torch.randint(0, left_top_y.size(0), (self.num_regions_per_img,))
proposals = []
for i in range(self.num_regions_per_img):
rb_x_candidates = right_bot_x[x_inds[i]:]
rb_x = rb_x_candidates[torch.randperm(rb_x_candidates.size(0))[0]]
rb_y_candidates = right_bot_y[y_inds[i]:]
rb_y = rb_y_candidates[torch.randperm(rb_y_candidates.size(0))[0]]
this_box = torch.cat((left_top_x[x_inds[i]].view(1,1), left_top_y[y_inds[i]].view(1,1), rb_x.view(1,1), rb_y.view(1,1)),dim=-1)
proposals.append(this_box)
proposals = torch.cat(proposals).float().to(self.device)
proposals = [Boxes(proposals) for i in range(len(batched_inputs))] # a list of Boxes
return proposals
def create_grid_boxes(self, batched_inputs, grid_length=32):
""" create (image_height/32) * (image_width/32) pseudo grid boxes, and randomly sample self.num_regions_per_img boxes
return a list of Boxes
"""
images = self.preprocess_image(batched_inputs)
image_height = images.tensor.size(2)
image_width = images.tensor.size(3)
left_top_x = torch.tensor([i*(grid_length) for i in range(image_width // grid_length)])
left_top_y = torch.tensor([i*(grid_length) for i in range(image_height // grid_length)])
right_bot_x = torch.tensor([(i+1)*(grid_length) for i in range(image_width // grid_length)])
right_bot_y = torch.tensor([(i+1)*(grid_length) for i in range(image_height // grid_length)])
left_top_x, left_top_y = torch.meshgrid(left_top_x, left_top_y)
right_bot_x, right_bot_y = torch.meshgrid(right_bot_x, right_bot_y)
grid_boxes = torch.cat((left_top_x.flatten().view(-1,1), left_top_y.flatten().view(-1,1),\
right_bot_x.flatten().view(-1,1), right_bot_y.flatten().view(-1,1),), dim=1)
sample_ind = torch.randperm(grid_boxes.size(0))[:self.num_regions_per_img]
grid_boxes = grid_boxes[sample_ind]
grid_boxes = grid_boxes.float().to(self.device)
proposals = [Boxes(grid_boxes) for i in range(len(batched_inputs))] # a list of Boxes
return proposals
def create_global_proposals(self, batched_inputs):
""" create a single global box for an image, so as to extract global image features with RoIAlign on high-resolution images.
"""
images = self.preprocess_image(batched_inputs)
image_height = images.tensor.size(2)
image_width = images.tensor.size(3)
global_box = torch.tensor([0, 0, image_width, image_height]).view(1,4).float().to(self.device)
proposals = [Boxes(global_box) for i in range(len(batched_inputs))] # a list of Boxes
return proposals
def inference(self, batched_inputs, detected_instances=None, do_postprocess=True):
"""
Grounding inference: map region features with sentence tokens
return: matching scores between region features and tokenized texts, region boxes in raw image resolution, image id & raw string texts & tokenized texts
"""
assert len(batched_inputs) == 1 # only one instance per image during inference
gt_instances = None
losses = {}
# localization branch: offline modules to get the region proposals
proposals = self.get_region_proposals(batched_inputs)
# recognition branch: get 2D feature maps using the backbone of recognition branch
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
region_feats = self.get_region_features(images, features, proposals, gt_instances)
# encode text
num_cap = int(batched_inputs[0][1].size(0) / self.context_length)
text = batched_inputs[0][1].view(num_cap, -1).to(self.device) # [num_cap, context_length]
text_embs = self.lang_encoder.encode_text(text, only_eot=False) # [img_batch, n_ctx, transformer.width] or [img_batch, transformer.width]
# matching visual features with text embs
region_feats = region_feats / region_feats.norm(dim=-1, keepdim=True)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
match_scores = region_feats @ text_embs.view(-1, text_embs.size(-1)).t() # [#regions, img_batch * n_ctx]
# visualize_proposals(batched_inputs, proposals, self.input_format, vis_pretrain=True)
# multiply RPN logits
rpn_scores = [p.get('objectness_logits') for p in proposals][0]
match_scores = (match_scores * rpn_scores[:, None]) ** 0.5
# scale the object proposals back to raw image resolution
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
processed_results = PretrainFastRCNN._postprocess(proposals, batched_inputs)
return match_scores, processed_results
@staticmethod
def _postprocess(instances, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Rescale the output instances to the target size.
"""
# note: private function; subject to changes
processed_results = []
for results_per_image, input_per_image in zip(instances, batched_inputs):
height, width = input_per_image[-1][2] # original image size, before resizing
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
def visualize_proposals(batched_inputs, proposals, input_format, vis_pretrain=False):
"""
A function used to visualize images and proposals. It shows ground truth
bounding boxes on the original image and up to 20 top-scoring predicted
object proposals on the original image. Users can implement different
visualization functions for different models.
Args:
batched_inputs (list): a list that contains input to the model.
proposals (list): a list that contains predicted proposals. Both
batched_inputs and proposals should have the same length.
"""
from detectron2.utils.visualizer import Visualizer
max_vis_prop = 50
if vis_pretrain:
for i, (input, prop) in enumerate(zip(batched_inputs, proposals)):
img = input[0] * 255.0
img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
box_size = min(len(prop.proposal_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img = prop_img
to_save = Image.fromarray(np.array(vis_img, np.uint8))
to_save.save("output/regions/" + str(i) + ".png")
#break # only visualize one image in a batch
else:
for input, prop in zip(batched_inputs, proposals):
img = input["image"]
img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
box_size = min(len(prop.proposal_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img = prop_img
# f_n = input['file_name']
to_save = Image.fromarray(np.array(vis_img, np.uint8))
to_save.save("output/regions/" + "proposals.png")
#break # only visualize one image in a batch
def visualize_results(batched_inputs, results, input_format, vis_pretrain=False):
"""
A function used to visualize images and results. It shows ground truth
bounding boxes on the original image and up to 20 top-scoring predicted
object results on the original image. Users can implement different
visualization functions for different models.
Args:
batched_inputs (list): a list that contains input to the model.
results (list): a list that contains predicted results. Both
batched_inputs and results should have the same length.
"""
from detectron2.utils.visualizer import Visualizer
max_vis_prop = 1
if vis_pretrain:
for i, (input, prop) in enumerate(zip(batched_inputs, results)):
img = input[0] * 255.0
img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
box_size = min(len(prop.proposal_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img = prop_img
to_save = Image.fromarray(np.array(vis_img, np.uint8))
# to_save.save("output/regions/" + str(i) + ".png")
#break # only visualize one image in a batch
else:
for input, prop in zip(batched_inputs, results):
img = input["image"]
img = convert_image_to_rgb(img.permute(1, 2, 0), input_format)
box_size = min(len(prop.pred_boxes), max_vis_prop)
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(
boxes=prop.pred_boxes[0:box_size].tensor.cpu().numpy()
)
prop_img = v_pred.get_image()
vis_img = prop_img
# f_n = input['file_name']
to_save = Image.fromarray(np.array(vis_img, np.uint8))
to_save.save("output/regions/" + "results.png")
#break # only visualize one image in a batch
return to_save |