Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import logging | |
import re | |
from typing import Dict, List | |
import torch | |
from tabulate import tabulate | |
def convert_basic_c2_names(original_keys): | |
""" | |
Apply some basic name conversion to names in C2 weights. | |
It only deals with typical backbone models. | |
Args: | |
original_keys (list[str]): | |
Returns: | |
list[str]: The same number of strings matching those in original_keys. | |
""" | |
layer_keys = copy.deepcopy(original_keys) | |
layer_keys = [ | |
{"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys | |
] # some hard-coded mappings | |
layer_keys = [k.replace("_", ".") for k in layer_keys] | |
layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] | |
layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] | |
# Uniform both bn and gn names to "norm" | |
layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] | |
layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] | |
layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] | |
# stem | |
layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] | |
# to avoid mis-matching with "conv1" in other components (e.g. detection head) | |
layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] | |
# layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) | |
# layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] | |
# layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] | |
# layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] | |
# layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] | |
# blocks | |
layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] | |
# DensePose substitutions | |
layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] | |
layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] | |
layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] | |
layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] | |
layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] | |
return layer_keys | |
def convert_c2_detectron_names(weights): | |
""" | |
Map Caffe2 Detectron weight names to Detectron2 names. | |
Args: | |
weights (dict): name -> tensor | |
Returns: | |
dict: detectron2 names -> tensor | |
dict: detectron2 names -> C2 names | |
""" | |
logger = logging.getLogger(__name__) | |
logger.info("Renaming Caffe2 weights ......") | |
original_keys = sorted(weights.keys()) | |
layer_keys = copy.deepcopy(original_keys) | |
layer_keys = convert_basic_c2_names(layer_keys) | |
# -------------------------------------------------------------------------- | |
# RPN hidden representation conv | |
# -------------------------------------------------------------------------- | |
# FPN case | |
# In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then | |
# shared for all other levels, hence the appearance of "fpn2" | |
layer_keys = [ | |
k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys | |
] | |
# Non-FPN case | |
layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# RPN box transformation conv | |
# -------------------------------------------------------------------------- | |
# FPN case (see note above about "fpn2") | |
layer_keys = [ | |
k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") | |
for k in layer_keys | |
] | |
layer_keys = [ | |
k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") | |
for k in layer_keys | |
] | |
# Non-FPN case | |
layer_keys = [ | |
k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys | |
] | |
layer_keys = [ | |
k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") | |
for k in layer_keys | |
] | |
# -------------------------------------------------------------------------- | |
# Fast R-CNN box head | |
# -------------------------------------------------------------------------- | |
layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] | |
layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] | |
layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] | |
layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] | |
# 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s | |
layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# FPN lateral and output convolutions | |
# -------------------------------------------------------------------------- | |
def fpn_map(name): | |
""" | |
Look for keys with the following patterns: | |
1) Starts with "fpn.inner." | |
Example: "fpn.inner.res2.2.sum.lateral.weight" | |
Meaning: These are lateral pathway convolutions | |
2) Starts with "fpn.res" | |
Example: "fpn.res2.2.sum.weight" | |
Meaning: These are FPN output convolutions | |
""" | |
splits = name.split(".") | |
norm = ".norm" if "norm" in splits else "" | |
if name.startswith("fpn.inner."): | |
# splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] | |
stage = int(splits[2][len("res") :]) | |
return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) | |
elif name.startswith("fpn.res"): | |
# splits example: ['fpn', 'res2', '2', 'sum', 'weight'] | |
stage = int(splits[1][len("res") :]) | |
return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) | |
return name | |
layer_keys = [fpn_map(k) for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# Mask R-CNN mask head | |
# -------------------------------------------------------------------------- | |
# roi_heads.StandardROIHeads case | |
layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] | |
layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] | |
layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] | |
# roi_heads.Res5ROIHeads case | |
layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# Keypoint R-CNN head | |
# -------------------------------------------------------------------------- | |
# interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" | |
layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] | |
layer_keys = [ | |
k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys | |
] | |
layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# Done with replacements | |
# -------------------------------------------------------------------------- | |
assert len(set(layer_keys)) == len(layer_keys) | |
assert len(original_keys) == len(layer_keys) | |
new_weights = {} | |
new_keys_to_original_keys = {} | |
for orig, renamed in zip(original_keys, layer_keys): | |
new_keys_to_original_keys[renamed] = orig | |
if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): | |
# remove the meaningless prediction weight for background class | |
new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 | |
new_weights[renamed] = weights[orig][new_start_idx:] | |
logger.info( | |
"Remove prediction weight for background class in {}. The shape changes from " | |
"{} to {}.".format( | |
renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) | |
) | |
) | |
elif renamed.startswith("cls_score."): | |
# move weights of bg class from original index 0 to last index | |
logger.info( | |
"Move classification weights for background class in {} from index 0 to " | |
"index {}.".format(renamed, weights[orig].shape[0] - 1) | |
) | |
new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) | |
else: | |
new_weights[renamed] = weights[orig] | |
return new_weights, new_keys_to_original_keys | |
# Note the current matching is not symmetric. | |
# it assumes model_state_dict will have longer names. | |
def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): | |
""" | |
Match names between the two state-dict, and returns a new chkpt_state_dict with names | |
converted to match model_state_dict with heuristics. The returned dict can be later | |
loaded with fvcore checkpointer. | |
If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 | |
model and will be renamed at first. | |
Strategy: suppose that the models that we will create will have prefixes appended | |
to each of its keys, for example due to an extra level of nesting that the original | |
pre-trained weights from ImageNet won't contain. For example, model.state_dict() | |
might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains | |
res2.conv1.weight. We thus want to match both parameters together. | |
For that, we look for each model weight, look among all loaded keys if there is one | |
that is a suffix of the current weight name, and use it if that's the case. | |
If multiple matches exist, take the one with longest size | |
of the corresponding name. For example, for the same model as before, the pretrained | |
weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, | |
we want to match backbone[0].body.conv1.weight to conv1.weight, and | |
backbone[0].body.res2.conv1.weight to res2.conv1.weight. | |
""" | |
model_keys = sorted(model_state_dict.keys()) | |
if c2_conversion: | |
ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) | |
# original_keys: the name in the original dict (before renaming) | |
else: | |
original_keys = {x: x for x in ckpt_state_dict.keys()} | |
ckpt_keys = sorted(ckpt_state_dict.keys()) | |
def match(a, b): | |
# Matched ckpt_key should be a complete (starts with '.') suffix. | |
# For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, | |
# but matches whatever_conv1 or mesh_head.whatever_conv1. | |
return a == b or a.endswith("." + b) | |
# get a matrix of string matches, where each (i, j) entry correspond to the size of the | |
# ckpt_key string, if it matches | |
match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] | |
match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) | |
# use the matched one with longest size in case of multiple matches | |
max_match_size, idxs = match_matrix.max(1) | |
# remove indices that correspond to no-match | |
idxs[max_match_size == 0] = -1 | |
logger = logging.getLogger(__name__) | |
# matched_pairs (matched checkpoint key --> matched model key) | |
matched_keys = {} | |
result_state_dict = {} | |
for idx_model, idx_ckpt in enumerate(idxs.tolist()): | |
if idx_ckpt == -1: | |
continue | |
key_model = model_keys[idx_model] | |
key_ckpt = ckpt_keys[idx_ckpt] | |
value_ckpt = ckpt_state_dict[key_ckpt] | |
shape_in_model = model_state_dict[key_model].shape | |
if shape_in_model != value_ckpt.shape: | |
logger.warning( | |
"Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( | |
key_ckpt, value_ckpt.shape, key_model, shape_in_model | |
) | |
) | |
logger.warning( | |
"{} will not be loaded. Please double check and see if this is desired.".format( | |
key_ckpt | |
) | |
) | |
continue | |
assert key_model not in result_state_dict | |
result_state_dict[key_model] = value_ckpt | |
if key_ckpt in matched_keys: # already added to matched_keys | |
logger.error( | |
"Ambiguity found for {} in checkpoint!" | |
"It matches at least two keys in the model ({} and {}).".format( | |
key_ckpt, key_model, matched_keys[key_ckpt] | |
) | |
) | |
raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") | |
matched_keys[key_ckpt] = key_model | |
# logging: | |
matched_model_keys = sorted(matched_keys.values()) | |
if len(matched_model_keys) == 0: | |
logger.warning("No weights in checkpoint matched with model.") | |
return ckpt_state_dict | |
common_prefix = _longest_common_prefix(matched_model_keys) | |
rev_matched_keys = {v: k for k, v in matched_keys.items()} | |
original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} | |
model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) | |
table = [] | |
memo = set() | |
for key_model in matched_model_keys: | |
if key_model in memo: | |
continue | |
if key_model in model_key_groups: | |
group = model_key_groups[key_model] | |
memo |= set(group) | |
shapes = [tuple(model_state_dict[k].shape) for k in group] | |
table.append( | |
( | |
_longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", | |
_group_str([original_keys[k] for k in group]), | |
" ".join([str(x).replace(" ", "") for x in shapes]), | |
) | |
) | |
else: | |
key_checkpoint = original_keys[key_model] | |
shape = str(tuple(model_state_dict[key_model].shape)) | |
table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) | |
table_str = tabulate( | |
table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] | |
) | |
logger.info( | |
"Following weights matched with " | |
+ (f"submodule {common_prefix[:-1]}" if common_prefix else "model") | |
+ ":\n" | |
+ table_str | |
) | |
unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] | |
for k in unmatched_ckpt_keys: | |
result_state_dict[k] = ckpt_state_dict[k] | |
return result_state_dict | |
def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): | |
""" | |
Params in the same submodule are grouped together. | |
Args: | |
keys: names of all parameters | |
original_names: mapping from parameter name to their name in the checkpoint | |
Returns: | |
dict[name -> all other names in the same group] | |
""" | |
def _submodule_name(key): | |
pos = key.rfind(".") | |
if pos < 0: | |
return None | |
prefix = key[: pos + 1] | |
return prefix | |
all_submodules = [_submodule_name(k) for k in keys] | |
all_submodules = [x for x in all_submodules if x] | |
all_submodules = sorted(all_submodules, key=len) | |
ret = {} | |
for prefix in all_submodules: | |
group = [k for k in keys if k.startswith(prefix)] | |
if len(group) <= 1: | |
continue | |
original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) | |
if len(original_name_lcp) == 0: | |
# don't group weights if original names don't share prefix | |
continue | |
for k in group: | |
if k in ret: | |
continue | |
ret[k] = group | |
return ret | |
def _longest_common_prefix(names: List[str]) -> str: | |
""" | |
["abc.zfg", "abc.zef"] -> "abc." | |
""" | |
names = [n.split(".") for n in names] | |
m1, m2 = min(names), max(names) | |
ret = [a for a, b in zip(m1, m2) if a == b] | |
ret = ".".join(ret) + "." if len(ret) else "" | |
return ret | |
def _longest_common_prefix_str(names: List[str]) -> str: | |
m1, m2 = min(names), max(names) | |
lcp = [a for a, b in zip(m1, m2) if a == b] | |
lcp = "".join(lcp) | |
return lcp | |
def _group_str(names: List[str]) -> str: | |
""" | |
Turn "common1", "common2", "common3" into "common{1,2,3}" | |
""" | |
lcp = _longest_common_prefix_str(names) | |
rest = [x[len(lcp) :] for x in names] | |
rest = "{" + ",".join(rest) + "}" | |
ret = lcp + rest | |
# add some simplification for BN specifically | |
ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") | |
ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") | |
return ret | |