File size: 24,087 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import os
import cv2
import time
import random
import re
import string
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence
import albumentations as A
from albumentations.pytorch import ToTensorV2

from .indigo import Indigo
from .indigo.renderer import IndigoRenderer

from .augment import SafeRotate, CropWhite, PadWhite, SaltAndPepperNoise
from .utils import FORMAT_INFO
from .tokenizer import PAD_ID
from .chemistry import get_num_atoms, normalize_nodes
from .constants import RGROUP_SYMBOLS, SUBSTITUTIONS, ELEMENTS, COLORS

cv2.setNumThreads(1)

INDIGO_HYGROGEN_PROB = 0.2
INDIGO_FUNCTIONAL_GROUP_PROB = 0.8
INDIGO_CONDENSED_PROB = 0.5
INDIGO_RGROUP_PROB = 0.5
INDIGO_COMMENT_PROB = 0.3
INDIGO_DEARMOTIZE_PROB = 0.8
INDIGO_COLOR_PROB = 0.2


def get_transforms(input_size, augment=True, rotate=True, debug=False):
    trans_list = []
    if augment and rotate:
        trans_list.append(SafeRotate(limit=90, border_mode=cv2.BORDER_CONSTANT, value=(255, 255, 255)))
    trans_list.append(CropWhite(pad=5))
    if augment:
        trans_list += [
            # NormalizedGridDistortion(num_steps=10, distort_limit=0.3),
            A.CropAndPad(percent=[-0.01, 0.00], keep_size=False, p=0.5),
            PadWhite(pad_ratio=0.4, p=0.2),
            A.Downscale(scale_min=0.2, scale_max=0.5, interpolation=3),
            A.Blur(),
            A.GaussNoise(),
            SaltAndPepperNoise(num_dots=20, p=0.5)
        ]
    trans_list.append(A.Resize(input_size, input_size))
    if not debug:
        mean = [0.485, 0.456, 0.406]
        std = [0.229, 0.224, 0.225]
        trans_list += [
            A.ToGray(p=1),
            A.Normalize(mean=mean, std=std),
            ToTensorV2(),
        ]
    return A.Compose(trans_list, keypoint_params=A.KeypointParams(format='xy', remove_invisible=False))


def add_functional_group(indigo, mol, debug=False):
    if random.random() > INDIGO_FUNCTIONAL_GROUP_PROB:
        return mol
    # Delete functional group and add a pseudo atom with its abbrv
    substitutions = [sub for sub in SUBSTITUTIONS]
    random.shuffle(substitutions)
    for sub in substitutions:
        query = indigo.loadSmarts(sub.smarts)
        matcher = indigo.substructureMatcher(mol)
        matched_atoms_ids = set()
        for match in matcher.iterateMatches(query):
            if random.random() < sub.probability or debug:
                atoms = []
                atoms_ids = set()
                for item in query.iterateAtoms():
                    atom = match.mapAtom(item)
                    atoms.append(atom)
                    atoms_ids.add(atom.index())
                if len(matched_atoms_ids.intersection(atoms_ids)) > 0:
                    continue
                abbrv = random.choice(sub.abbrvs)
                superatom = mol.addAtom(abbrv)
                for atom in atoms:
                    for nei in atom.iterateNeighbors():
                        if nei.index() not in atoms_ids:
                            if nei.symbol() == 'H':
                                # indigo won't match explicit hydrogen, so remove them explicitly
                                atoms_ids.add(nei.index())
                            else:
                                superatom.addBond(nei, nei.bond().bondOrder())
                for id in atoms_ids:
                    mol.getAtom(id).remove()
                matched_atoms_ids = matched_atoms_ids.union(atoms_ids)
    return mol


def add_explicit_hydrogen(indigo, mol):
    atoms = []
    for atom in mol.iterateAtoms():
        try:
            hs = atom.countImplicitHydrogens()
            if hs > 0:
                atoms.append((atom, hs))
        except:
            continue
    if len(atoms) > 0 and random.random() < INDIGO_HYGROGEN_PROB:
        atom, hs = random.choice(atoms)
        for i in range(hs):
            h = mol.addAtom('H')
            h.addBond(atom, 1)
    return mol


def add_rgroup(indigo, mol, smiles):
    atoms = []
    for atom in mol.iterateAtoms():
        try:
            hs = atom.countImplicitHydrogens()
            if hs > 0:
                atoms.append(atom)
        except:
            continue
    if len(atoms) > 0 and '*' not in smiles:
        if random.random() < INDIGO_RGROUP_PROB:
            atom_idx = random.choice(range(len(atoms)))
            atom = atoms[atom_idx]
            atoms.pop(atom_idx)
            symbol = random.choice(RGROUP_SYMBOLS)
            r = mol.addAtom(symbol)
            r.addBond(atom, 1)
    return mol


def get_rand_symb():
    symb = random.choice(ELEMENTS)
    if random.random() < 0.1:
        symb += random.choice(string.ascii_lowercase)
    if random.random() < 0.1:
        symb += random.choice(string.ascii_uppercase)
    if random.random() < 0.1:
        symb = f'({gen_rand_condensed()})'
    return symb


def get_rand_num():
    if random.random() < 0.9:
        if random.random() < 0.8:
            return ''
        else:
            return str(random.randint(2, 9))
    else:
        return '1' + str(random.randint(2, 9))


def gen_rand_condensed():
    tokens = []
    for i in range(5):
        if i >= 1 and random.random() < 0.8:
            break
        tokens.append(get_rand_symb())
        tokens.append(get_rand_num())
    return ''.join(tokens)


def add_rand_condensed(indigo, mol):
    atoms = []
    for atom in mol.iterateAtoms():
        try:
            hs = atom.countImplicitHydrogens()
            if hs > 0:
                atoms.append(atom)
        except:
            continue
    if len(atoms) > 0 and random.random() < INDIGO_CONDENSED_PROB:
        atom = random.choice(atoms)
        symbol = gen_rand_condensed()
        r = mol.addAtom(symbol)
        r.addBond(atom, 1)
    return mol


def generate_output_smiles(indigo, mol):
    # TODO: if using mol.canonicalSmiles(), explicit H will be removed
    smiles = mol.smiles()
    mol = indigo.loadMolecule(smiles)
    if '*' in smiles:
        part_a, part_b = smiles.split(' ', maxsplit=1)
        part_b = re.search(r'\$.*\$', part_b).group(0)[1:-1]
        symbols = [t for t in part_b.split(';') if len(t) > 0]
        output = ''
        cnt = 0
        for i, c in enumerate(part_a):
            if c != '*':
                output += c
            else:
                output += f'[{symbols[cnt]}]'
                cnt += 1
        return mol, output
    else:
        if ' ' in smiles:
            # special cases with extension
            smiles = smiles.split(' ')[0]
        return mol, smiles


def add_comment(indigo):
    if random.random() < INDIGO_COMMENT_PROB:
        indigo.setOption('render-comment', str(random.randint(1, 20)) + random.choice(string.ascii_letters))
        indigo.setOption('render-comment-font-size', random.randint(40, 60))
        indigo.setOption('render-comment-alignment', random.choice([0, 0.5, 1]))
        indigo.setOption('render-comment-position', random.choice(['top', 'bottom']))
        indigo.setOption('render-comment-offset', random.randint(2, 30))


def add_color(indigo, mol):
    if random.random() < INDIGO_COLOR_PROB:
        indigo.setOption('render-coloring', True)
    if random.random() < INDIGO_COLOR_PROB:
        indigo.setOption('render-base-color', random.choice(list(COLORS.values())))
    if random.random() < INDIGO_COLOR_PROB:
        if random.random() < 0.5:
            indigo.setOption('render-highlight-color-enabled', True)
            indigo.setOption('render-highlight-color', random.choice(list(COLORS.values())))
        if random.random() < 0.5:
            indigo.setOption('render-highlight-thickness-enabled', True)
        for atom in mol.iterateAtoms():
            if random.random() < 0.1:
                atom.highlight()
    return mol


def get_graph(mol, image, shuffle_nodes=False, pseudo_coords=False):
    mol.layout()
    coords, symbols = [], []
    index_map = {}
    atoms = [atom for atom in mol.iterateAtoms()]
    if shuffle_nodes:
        random.shuffle(atoms)
    for i, atom in enumerate(atoms):
        if pseudo_coords:
            x, y, z = atom.xyz()
        else:
            x, y = atom.coords()
        coords.append([x, y])
        symbols.append(atom.symbol())
        index_map[atom.index()] = i
    if pseudo_coords:
        coords = normalize_nodes(np.array(coords))
        h, w, _ = image.shape
        coords[:, 0] = coords[:, 0] * w
        coords[:, 1] = coords[:, 1] * h
    n = len(symbols)
    edges = np.zeros((n, n), dtype=int)
    for bond in mol.iterateBonds():
        s = index_map[bond.source().index()]
        t = index_map[bond.destination().index()]
        # 1/2/3/4 : single/double/triple/aromatic
        edges[s, t] = bond.bondOrder()
        edges[t, s] = bond.bondOrder()
        if bond.bondStereo() in [5, 6]:
            edges[s, t] = bond.bondStereo()
            edges[t, s] = 11 - bond.bondStereo()
    graph = {
        'coords': coords,
        'symbols': symbols,
        'edges': edges,
        'num_atoms': len(symbols)
    }
    return graph


def generate_indigo_image(smiles, mol_augment=True, default_option=False, shuffle_nodes=False, pseudo_coords=False,
                          include_condensed=True, debug=False):
    indigo = Indigo()
    renderer = IndigoRenderer(indigo)
    indigo.setOption('render-output-format', 'png')
    indigo.setOption('render-background-color', '1,1,1')
    indigo.setOption('render-stereo-style', 'none')
    indigo.setOption('render-label-mode', 'hetero')
    indigo.setOption('render-font-family', 'Arial')
    if not default_option:
        thickness = random.uniform(0.5, 2)  # limit the sum of the following two parameters to be smaller than 4
        indigo.setOption('render-relative-thickness', thickness)
        indigo.setOption('render-bond-line-width', random.uniform(1, 4 - thickness))
        if random.random() < 0.5:
            indigo.setOption('render-font-family', random.choice(['Arial', 'Times', 'Courier', 'Helvetica']))
        indigo.setOption('render-label-mode', random.choice(['hetero', 'terminal-hetero']))
        indigo.setOption('render-implicit-hydrogens-visible', random.choice([True, False]))
        if random.random() < 0.1:
            indigo.setOption('render-stereo-style', 'old')
        if random.random() < 0.2:
            indigo.setOption('render-atom-ids-visible', True)

    try:
        mol = indigo.loadMolecule(smiles)
        if mol_augment:
            if random.random() < INDIGO_DEARMOTIZE_PROB:
                mol.dearomatize()
            else:
                mol.aromatize()
            smiles = mol.canonicalSmiles()
            add_comment(indigo)
            mol = add_explicit_hydrogen(indigo, mol)
            mol = add_rgroup(indigo, mol, smiles)
            if include_condensed:
                mol = add_rand_condensed(indigo, mol)
            mol = add_functional_group(indigo, mol, debug)
            mol = add_color(indigo, mol)
            mol, smiles = generate_output_smiles(indigo, mol)

        buf = renderer.renderToBuffer(mol)
        img = cv2.imdecode(np.asarray(bytearray(buf), dtype=np.uint8), 1)  # decode buffer to image
        # img = np.repeat(np.expand_dims(img, 2), 3, axis=2)  # expand to RGB
        graph = get_graph(mol, img, shuffle_nodes, pseudo_coords)
        success = True
    except Exception:
        if debug:
            raise Exception
        img = np.array([[[255., 255., 255.]] * 10] * 10).astype(np.float32)
        graph = {}
        success = False
    return img, smiles, graph, success


class TrainDataset(Dataset):
    def __init__(self, args, df, tokenizer, split='train', dynamic_indigo=False):
        super().__init__()
        self.df = df
        self.args = args
        self.tokenizer = tokenizer
        if 'file_path' in df.columns:
            self.file_paths = df['file_path'].values
            if not self.file_paths[0].startswith(args.data_path):
                self.file_paths = [os.path.join(args.data_path, path) for path in df['file_path']]
        self.smiles = df['SMILES'].values if 'SMILES' in df.columns else None
        self.formats = args.formats
        self.labelled = (split == 'train')
        if self.labelled:
            self.labels = {}
            for format_ in self.formats:
                if format_ in ['atomtok', 'inchi']:
                    field = FORMAT_INFO[format_]['name']
                    if field in df.columns:
                        self.labels[format_] = df[field].values
        self.transform = get_transforms(args.input_size,
                                        augment=(self.labelled and args.augment))
        # self.fix_transform = A.Compose([A.Transpose(p=1), A.VerticalFlip(p=1)])
        self.dynamic_indigo = (dynamic_indigo and split == 'train')
        if self.labelled and not dynamic_indigo and args.coords_file is not None:
            if args.coords_file == 'aux_file':
                self.coords_df = df
                self.pseudo_coords = True
            else:
                self.coords_df = pd.read_csv(args.coords_file)
                self.pseudo_coords = False
        else:
            self.coords_df = None
            self.pseudo_coords = args.pseudo_coords

    def __len__(self):
        return len(self.df)

    def image_transform(self, image, coords=[], renormalize=False):
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # .astype(np.float32)
        augmented = self.transform(image=image, keypoints=coords)
        image = augmented['image']
        if len(coords) > 0:
            coords = np.array(augmented['keypoints'])
            if renormalize:
                coords = normalize_nodes(coords, flip_y=False)
            else:
                _, height, width = image.shape
                coords[:, 0] = coords[:, 0] / width
                coords[:, 1] = coords[:, 1] / height
            coords = np.array(coords).clip(0, 1)
            return image, coords
        return image

    def __getitem__(self, idx):
        try:
            return self.getitem(idx)
        except Exception as e:
            with open(os.path.join(self.args.save_path, f'error_dataset_{int(time.time())}.log'), 'w') as f:
                f.write(str(e))
            raise e

    def getitem(self, idx):
        ref = {}
        if self.dynamic_indigo:
            begin = time.time()
            image, smiles, graph, success = generate_indigo_image(
                self.smiles[idx], mol_augment=self.args.mol_augment, default_option=self.args.default_option,
                shuffle_nodes=self.args.shuffle_nodes, pseudo_coords=self.pseudo_coords,
                include_condensed=self.args.include_condensed)
            # raw_image = image
            end = time.time()
            if idx < 30 and self.args.save_image:
                path = os.path.join(self.args.save_path, 'images')
                os.makedirs(path, exist_ok=True)
                cv2.imwrite(os.path.join(path, f'{idx}.png'), image)
            if not success:
                return idx, None, {}
            image, coords = self.image_transform(image, graph['coords'], renormalize=self.pseudo_coords)
            graph['coords'] = coords
            ref['time'] = end - begin
            if 'atomtok' in self.formats:
                max_len = FORMAT_INFO['atomtok']['max_len']
                label = self.tokenizer['atomtok'].text_to_sequence(smiles, tokenized=False)
                ref['atomtok'] = torch.LongTensor(label[:max_len])
            if 'edges' in self.formats and 'atomtok_coords' not in self.formats and 'chartok_coords' not in self.formats:
                ref['edges'] = torch.tensor(graph['edges'])
            if 'atomtok_coords' in self.formats:
                self._process_atomtok_coords(idx, ref, smiles, graph['coords'], graph['edges'],
                                             mask_ratio=self.args.mask_ratio)
            if 'chartok_coords' in self.formats:
                self._process_chartok_coords(idx, ref, smiles, graph['coords'], graph['edges'],
                                             mask_ratio=self.args.mask_ratio)
            return idx, image, ref
        else:
            file_path = self.file_paths[idx]
            image = cv2.imread(file_path)
            if image is None:
                image = np.array([[[255., 255., 255.]] * 10] * 10).astype(np.float32)
                print(file_path, 'not found!')
            if self.coords_df is not None:
                h, w, _ = image.shape
                coords = np.array(eval(self.coords_df.loc[idx, 'node_coords']))
                if self.pseudo_coords:
                    coords = normalize_nodes(coords)
                coords[:, 0] = coords[:, 0] * w
                coords[:, 1] = coords[:, 1] * h
                image, coords = self.image_transform(image, coords, renormalize=self.pseudo_coords)
            else:
                image = self.image_transform(image)
                coords = None
            if self.labelled:
                smiles = self.smiles[idx]
                if 'atomtok' in self.formats:
                    max_len = FORMAT_INFO['atomtok']['max_len']
                    label = self.tokenizer['atomtok'].text_to_sequence(smiles, False)
                    ref['atomtok'] = torch.LongTensor(label[:max_len])
                if 'atomtok_coords' in self.formats:
                    if coords is not None:
                        self._process_atomtok_coords(idx, ref, smiles, coords, mask_ratio=0)
                    else:
                        self._process_atomtok_coords(idx, ref, smiles, mask_ratio=1)
                if 'chartok_coords' in self.formats:
                    if coords is not None:
                        self._process_chartok_coords(idx, ref, smiles, coords, mask_ratio=0)
                    else:
                        self._process_chartok_coords(idx, ref, smiles, mask_ratio=1)
            if self.args.predict_coords and ('atomtok_coords' in self.formats or 'chartok_coords' in self.formats):
                smiles = self.smiles[idx]
                if 'atomtok_coords' in self.formats:
                    self._process_atomtok_coords(idx, ref, smiles, mask_ratio=1)
                if 'chartok_coords' in self.formats:
                    self._process_chartok_coords(idx, ref, smiles, mask_ratio=1)
            return idx, image, ref

    def _process_atomtok_coords(self, idx, ref, smiles, coords=None, edges=None, mask_ratio=0):
        max_len = FORMAT_INFO['atomtok_coords']['max_len']
        tokenizer = self.tokenizer['atomtok_coords']
        if smiles is None or type(smiles) is not str:
            smiles = ""
        label, indices = tokenizer.smiles_to_sequence(smiles, coords, mask_ratio=mask_ratio)
        ref['atomtok_coords'] = torch.LongTensor(label[:max_len])
        indices = [i for i in indices if i < max_len]
        ref['atom_indices'] = torch.LongTensor(indices)
        if tokenizer.continuous_coords:
            if coords is not None:
                ref['coords'] = torch.tensor(coords)
            else:
                ref['coords'] = torch.ones(len(indices), 2) * -1.
        if edges is not None:
            ref['edges'] = torch.tensor(edges)[:len(indices), :len(indices)]
        else:
            if 'edges' in self.df.columns:
                edge_list = eval(self.df.loc[idx, 'edges'])
                n = len(indices)
                edges = torch.zeros((n, n), dtype=torch.long)
                for u, v, t in edge_list:
                    if u < n and v < n:
                        if t <= 4:
                            edges[u, v] = t
                            edges[v, u] = t
                        else:
                            edges[u, v] = t
                            edges[v, u] = 11 - t
                ref['edges'] = edges
            else:
                ref['edges'] = torch.ones(len(indices), len(indices), dtype=torch.long) * (-100)

    def _process_chartok_coords(self, idx, ref, smiles, coords=None, edges=None, mask_ratio=0):
        max_len = FORMAT_INFO['chartok_coords']['max_len']
        tokenizer = self.tokenizer['chartok_coords']
        if smiles is None or type(smiles) is not str:
            smiles = ""
        label, indices = tokenizer.smiles_to_sequence(smiles, coords, mask_ratio=mask_ratio)
        ref['chartok_coords'] = torch.LongTensor(label[:max_len])
        indices = [i for i in indices if i < max_len]
        ref['atom_indices'] = torch.LongTensor(indices)
        if tokenizer.continuous_coords:
            if coords is not None:
                ref['coords'] = torch.tensor(coords)
            else:
                ref['coords'] = torch.ones(len(indices), 2) * -1.
        if edges is not None:
            ref['edges'] = torch.tensor(edges)[:len(indices), :len(indices)]
        else:
            if 'edges' in self.df.columns:
                edge_list = eval(self.df.loc[idx, 'edges'])
                n = len(indices)
                edges = torch.zeros((n, n), dtype=torch.long)
                for u, v, t in edge_list:
                    if u < n and v < n:
                        if t <= 4:
                            edges[u, v] = t
                            edges[v, u] = t
                        else:
                            edges[u, v] = t
                            edges[v, u] = 11 - t
                ref['edges'] = edges
            else:
                ref['edges'] = torch.ones(len(indices), len(indices), dtype=torch.long) * (-100)


class AuxTrainDataset(Dataset):

    def __init__(self, args, train_df, aux_df, tokenizer):
        super().__init__()
        self.train_dataset = TrainDataset(args, train_df, tokenizer, dynamic_indigo=args.dynamic_indigo)
        self.aux_dataset = TrainDataset(args, aux_df, tokenizer, dynamic_indigo=False)

    def __len__(self):
        return len(self.train_dataset) + len(self.aux_dataset)

    def __getitem__(self, idx):
        if idx < len(self.train_dataset):
            return self.train_dataset[idx]
        else:
            return self.aux_dataset[idx - len(self.train_dataset)]


def pad_images(imgs):
    # B, C, H, W
    max_shape = [0, 0]
    for img in imgs:
        for i in range(len(max_shape)):
            max_shape[i] = max(max_shape[i], img.shape[-1 - i])
    stack = []
    for img in imgs:
        pad = []
        for i in range(len(max_shape)):
            pad = pad + [0, max_shape[i] - img.shape[-1 - i]]
        stack.append(F.pad(img, pad, value=0))
    return torch.stack(stack)


def bms_collate(batch):
    ids = []
    imgs = []
    batch = [ex for ex in batch if ex[1] is not None]
    formats = list(batch[0][2].keys())
    seq_formats = [k for k in formats if
                   k in ['atomtok', 'inchi', 'nodes', 'atomtok_coords', 'chartok_coords', 'atom_indices']]
    refs = {key: [[], []] for key in seq_formats}
    for ex in batch:
        ids.append(ex[0])
        imgs.append(ex[1])
        ref = ex[2]
        for key in seq_formats:
            refs[key][0].append(ref[key])
            refs[key][1].append(torch.LongTensor([len(ref[key])]))
    # Sequence
    for key in seq_formats:
        # this padding should work for atomtok_with_coords too, each of which has shape (length, 4)
        refs[key][0] = pad_sequence(refs[key][0], batch_first=True, padding_value=PAD_ID)
        refs[key][1] = torch.stack(refs[key][1]).reshape(-1, 1)
    # Time
    # if 'time' in formats:
    #     refs['time'] = [ex[2]['time'] for ex in batch]
    # Coords
    if 'coords' in formats:
        refs['coords'] = pad_sequence([ex[2]['coords'] for ex in batch], batch_first=True, padding_value=-1.)
    # Edges
    if 'edges' in formats:
        edges_list = [ex[2]['edges'] for ex in batch]
        max_len = max([len(edges) for edges in edges_list])
        refs['edges'] = torch.stack(
            [F.pad(edges, (0, max_len - len(edges), 0, max_len - len(edges)), value=-100) for edges in edges_list],
            dim=0)
    return ids, pad_images(imgs), refs