RxnIM / app.py
CYF200127's picture
Update app.py
2df1e99 verified
import os
import gradio as gr
import json
from rxnim import RXNIM
from getReaction import generate_combined_image
import torch
from rxn.reaction import Reaction
from rdkit import Chem
from rdkit.Chem import rdChemReactions
from rdkit.Chem import Draw
from rdkit.Chem import AllChem
from rdkit.Chem.Draw import rdMolDraw2D
import cairosvg
import re
PROMPT_DIR = "prompts/"
ckpt_path = "./rxn/model/model.ckpt"
model = Reaction(ckpt_path, device=torch.device('cpu'))
# 定义 prompt 文件名到友好名字的映射
PROMPT_NAMES = {
"2_RxnOCR.txt": "Reaction Image Parsing Workflow",
}
example_diagram = "examples/exp.png"
rdkit_image = "examples/rdkit.png"
def list_prompt_files_with_names():
"""
列出 prompts 目录下的所有 .txt 文件,为没有名字的生成默认名字。
返回 {friendly_name: filename} 映射。
"""
prompt_files = {}
for f in os.listdir(PROMPT_DIR):
if f.endswith(".txt"):
# 如果文件名有预定义的名字,使用预定义名字
friendly_name = PROMPT_NAMES.get(f, f"Task: {os.path.splitext(f)[0]}")
prompt_files[friendly_name] = f
return prompt_files
def parse_reactions(output_json):
"""
解析 JSON 格式的反应数据并格式化输出,包含颜色定制。
"""
reactions_data = json.loads(output_json) # 转换 JSON 字符串为字典
reactions_list = reactions_data.get("reactions", [])
detailed_output = []
smiles_output = []
for reaction in reactions_list:
reaction_id = reaction.get("reaction_id", "Unknown ID")
reactants = [r.get("smiles", "Unknown") for r in reaction.get("reactants", [])]
conditions = [
f"<span style='color:red'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
for c in reaction.get("conditions", [])
]
conditions_1 = [
f"<span style='color:black'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
for c in reaction.get("conditions", [])
]
products = [f"<span style='color:orange'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
products_1 = [f"<span style='color:black'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
products_2 = [r.get("smiles", "Unknown") for r in reaction.get("products", [])]
# 构造反应的完整字符串,定制字体颜色
full_reaction = f"{'.'.join(reactants)}>>{'.'.join(products_1)} | {', '.join(conditions_1)}"
full_reaction = f"<span style='color:black'>{full_reaction}</span>"
# 详细反应格式化输出
reaction_output = f"<b>Reaction: </b> {reaction_id}<br>"
reaction_output += f" Reactants: <span style='color:blue'>{', '.join(reactants)}</span><br>"
reaction_output += f" Conditions: {', '.join(conditions)}<br>"
reaction_output += f" Products: {', '.join(products)}<br>"
reaction_output += f" <b>Full Reaction:</b> {full_reaction}<br>"
reaction_output += "<br>"
detailed_output.append(reaction_output)
reaction_smiles = f"{'.'.join(reactants)}>>{'.'.join(products_2)}"
smiles_output.append(reaction_smiles)
return detailed_output, smiles_output
def process_chem_image(image, selected_task):
chem_mllm = RXNIM()
# 将友好名字转换为实际文件名
prompt_path = os.path.join(PROMPT_DIR, prompts_with_names[selected_task])
image_path = "temp_image.png"
image.save(image_path)
# 调用 RXNIM 处理
rxnim_result = chem_mllm.process(image_path, prompt_path)
# 将 JSON 结果解析为结构化输出
detailed_reactions, smiles_output = parse_reactions(rxnim_result)
# 调用 RxnScribe 模型处理并生成整合图像
predictions = model.predict_image_file(image_path, molscribe=True, ocr=True)
combined_image_path = generate_combined_image(predictions, image_path)
#combined_image_path = model.draw_predictions(predictions, image_path)
json_file_path = "output.json"
with open(json_file_path, "w") as json_file:
json.dump(json.loads(rxnim_result), json_file, indent=4)
# 返回详细反应和整合图像
return "\n\n".join(detailed_reactions), smiles_output, combined_image_path, example_diagram, json_file_path
# 获取 prompts 和友好名字
prompts_with_names = list_prompt_files_with_names()
# 示例数据:图像路径 + 任务选项
examples = [
["examples/reaction1.png", "Reaction Image Parsing Workflow"],
["examples/reaction2.png", "Reaction Image Parsing Workflow"],
["examples/reaction3.png", "Reaction Image Parsing Workflow"],
["examples/reaction4.png", "Reaction Image Parsing Workflow"],
]
# 定义 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown(
"""
<center> <h1>Towards Large-scale Chemical Reaction Image Parsing via a Multimodal Large Language Model<h1></center>
Upload a reaction image and select a predefined task prompt.
""")
# 上半部分,输入区域
with gr.Row(equal_height=False):
with gr.Column(scale=1): # 左侧列
image_input = gr.Image(type="pil", label="Upload Reaction Image")
task_radio = gr.Radio(
choices=list(prompts_with_names.keys()),
label="Select a predefined task",
)
with gr.Row(): # Clear 和 Submit 按钮放在同一行
clear_button = gr.Button("Clear")
process_button = gr.Button("Run", elem_id="submit-btn")
gr.Markdown("### Reaction Imge Parsing Output")
reaction_output = gr.HTML(label="Reaction outputs")
with gr.Column(scale=1):
gr.Markdown("### Reaction Extraction Output")
visualization_output = gr.Image(label="Visualization Output")
schematic_diagram = gr.Image(value=example_diagram, label="Schematic Diagram")
with gr.Column(scale=1):
gr.Markdown("### Machine-readable Data Output")
smiles_output = gr.Textbox(
label="Reaction SMILES",
show_copy_button=True,
interactive=False,
visible=False,
)
# 下半部分,图像和 JSON 输出
@gr.render(inputs = smiles_output) # 使用gr.render修饰器绑定输入和渲染逻辑
def show_split(inputs): # 定义处理和展示分割文本的函数
if not inputs or isinstance(inputs, str) and inputs.strip() == "": # 检查输入文本是否为空
return gr.Textbox(label= "SMILES of Reaction i"), gr.Image(value=rdkit_image, label= "RDKit Image of Reaction i",height=100)
else:
# 假设输入是逗号分隔的 SMILES 字符串
smiles_list = inputs.split(",")
smiles_list = [re.sub(r"^\s*\[?'?|'\]?\s*$", "", item) for item in smiles_list]
components = [] # 初始化一个组件列表,用于存放每个 SMILES 对应的 Textbox 组件
for i, smiles in enumerate(smiles_list):
smiles.replace('"', '').replace("'", "").replace("[", "").replace("]", "")
rxn = rdChemReactions.ReactionFromSmarts(smiles, useSmiles=True)
if rxn:
new_rxn = AllChem.ChemicalReaction()
for mol in rxn.GetReactants():
mol = Chem.MolFromMolBlock(Chem.MolToMolBlock(mol))
new_rxn.AddReactantTemplate(mol)
for mol in rxn.GetProducts():
mol = Chem.MolFromMolBlock(Chem.MolToMolBlock(mol))
new_rxn.AddProductTemplate(mol)
rxn = new_rxn
def atom_mapping_remover(rxn):
for reactant in rxn.GetReactants():
for atom in reactant.GetAtoms():
atom.SetAtomMapNum(0)
for product in rxn.GetProducts():
for atom in product.GetAtoms():
atom.SetAtomMapNum(0)
return rxn
atom_mapping_remover(rxn)
reactant1 = rxn.GetReactantTemplate(0)
print(reactant1.GetNumBonds)
reactant2 = rxn.GetReactantTemplate(1) if rxn.GetNumReactantTemplates() > 1 else None
if reactant1.GetNumBonds() > 0:
bond_length_reference = Draw.MeanBondLength(reactant1)
elif reactant2 and reactant2.GetNumBonds() > 0:
bond_length_reference = Draw.MeanBondLength(reactant2)
else:
bond_length_reference = 1.0
drawer = rdMolDraw2D.MolDraw2DSVG(-1, -1)
dopts = drawer.drawOptions()
dopts.padding = 0.1
dopts.includeRadicals = True
Draw.SetACS1996Mode(dopts, bond_length_reference*0.55)
dopts.bondLineWidth = 1.5
drawer.DrawReaction(rxn)
drawer.FinishDrawing()
svg_content = drawer.GetDrawingText()
svg_file = f"reaction{i+1}.svg"
with open(svg_file, "w") as f:
f.write(svg_content)
png_file = f"reaction_{i+1}.png"
cairosvg.svg2png(url=svg_file, write_to=png_file)
components.append(gr.Textbox(value=smiles,label= f"SMILES of Reaction {i + 1}", show_copy_button=True, interactive=False))
components.append(gr.Image(value=png_file,label= f"RDKit Image of Reaction {i + 1}"))
return components # 返回包含所有 SMILES Textbox 组件的列表
download_json = gr.File(label="Download JSON File",)
# 示例部分
gr.Examples(
examples=examples,
inputs=[image_input, task_radio],
outputs=[reaction_output, smiles_output, visualization_output],
)
# 绑定功能
clear_button.click(
lambda: (None, None, None, None, None),
inputs=[],
outputs=[
image_input,
task_radio,
reaction_output,
smiles_output,
visualization_output,
],
)
process_button.click(
process_chem_image,
inputs=[image_input, task_radio],
outputs=[
reaction_output,
smiles_output,
visualization_output,
schematic_diagram,
download_json,
],
)
demo.css = """
#submit-btn {
background-color: #FF914D;
color: white;
font-weight: bold;
}
"""
demo.launch()