RxnIM / molscribe /augment.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
import albumentations as A
from albumentations.augmentations.geometric.functional import safe_rotate_enlarged_img_size, _maybe_process_in_chunks, \
keypoint_rotate
import cv2
import math
import random
import numpy as np
def safe_rotate(
img: np.ndarray,
angle: int = 0,
interpolation: int = cv2.INTER_LINEAR,
value: int = None,
border_mode: int = cv2.BORDER_REFLECT_101,
):
old_rows, old_cols = img.shape[:2]
# getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape
image_center = (old_cols / 2, old_rows / 2)
# Rows and columns of the rotated image (not cropped)
new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols)
# Rotation Matrix
rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
# Shift the image to create padding
rotation_mat[0, 2] += new_cols / 2 - image_center[0]
rotation_mat[1, 2] += new_rows / 2 - image_center[1]
# CV2 Transformation function
warp_affine_fn = _maybe_process_in_chunks(
cv2.warpAffine,
M=rotation_mat,
dsize=(new_cols, new_rows),
flags=interpolation,
borderMode=border_mode,
borderValue=value,
)
# rotate image with the new bounds
rotated_img = warp_affine_fn(img)
return rotated_img
def keypoint_safe_rotate(keypoint, angle, rows, cols):
old_rows = rows
old_cols = cols
# Rows and columns of the rotated image (not cropped)
new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols)
col_diff = (new_cols - old_cols) / 2
row_diff = (new_rows - old_rows) / 2
# Shift keypoint
shifted_keypoint = (int(keypoint[0] + col_diff), int(keypoint[1] + row_diff), keypoint[2], keypoint[3])
# Rotate keypoint
rotated_keypoint = keypoint_rotate(shifted_keypoint, angle, rows=new_rows, cols=new_cols)
return rotated_keypoint
class SafeRotate(A.SafeRotate):
def __init__(
self,
limit=90,
interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_REFLECT_101,
value=None,
mask_value=None,
always_apply=False,
p=0.5,
):
super(SafeRotate, self).__init__(
limit=limit,
interpolation=interpolation,
border_mode=border_mode,
value=value,
mask_value=mask_value,
always_apply=always_apply,
p=p)
def apply(self, img, angle=0, interpolation=cv2.INTER_LINEAR, **params):
return safe_rotate(
img=img, value=self.value, angle=angle, interpolation=interpolation, border_mode=self.border_mode)
def apply_to_keypoint(self, keypoint, angle=0, **params):
return keypoint_safe_rotate(keypoint, angle=angle, rows=params["rows"], cols=params["cols"])
class CropWhite(A.DualTransform):
def __init__(self, value=(255, 255, 255), pad=0, p=1.0):
super(CropWhite, self).__init__(p=p)
self.value = value
self.pad = pad
assert pad >= 0
def update_params(self, params, **kwargs):
super().update_params(params, **kwargs)
assert "image" in kwargs
img = kwargs["image"]
height, width, _ = img.shape
x = (img != self.value).sum(axis=2)
if x.sum() == 0:
return params
row_sum = x.sum(axis=1)
top = 0
while row_sum[top] == 0 and top+1 < height:
top += 1
bottom = height
while row_sum[bottom-1] == 0 and bottom-1 > top:
bottom -= 1
col_sum = x.sum(axis=0)
left = 0
while col_sum[left] == 0 and left+1 < width:
left += 1
right = width
while col_sum[right-1] == 0 and right-1 > left:
right -= 1
# crop_top = max(0, top - self.pad)
# crop_bottom = max(0, height - bottom - self.pad)
# crop_left = max(0, left - self.pad)
# crop_right = max(0, width - right - self.pad)
# params.update({"crop_top": crop_top, "crop_bottom": crop_bottom,
# "crop_left": crop_left, "crop_right": crop_right})
params.update({"crop_top": top, "crop_bottom": height - bottom,
"crop_left": left, "crop_right": width - right})
return params
def apply(self, img, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params):
height, width, _ = img.shape
img = img[crop_top:height - crop_bottom, crop_left:width - crop_right]
img = A.augmentations.pad_with_params(
img, self.pad, self.pad, self.pad, self.pad, border_mode=cv2.BORDER_CONSTANT, value=self.value)
return img
def apply_to_keypoint(self, keypoint, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params):
x, y, angle, scale = keypoint[:4]
return x - crop_left + self.pad, y - crop_top + self.pad, angle, scale
def get_transform_init_args_names(self):
return ('value', 'pad')
class PadWhite(A.DualTransform):
def __init__(self, pad_ratio=0.2, p=0.5, value=(255, 255, 255)):
super(PadWhite, self).__init__(p=p)
self.pad_ratio = pad_ratio
self.value = value
def update_params(self, params, **kwargs):
super().update_params(params, **kwargs)
assert "image" in kwargs
img = kwargs["image"]
height, width, _ = img.shape
side = random.randrange(4)
if side == 0:
params['pad_top'] = int(height * self.pad_ratio * random.random())
elif side == 1:
params['pad_bottom'] = int(height * self.pad_ratio * random.random())
elif side == 2:
params['pad_left'] = int(width * self.pad_ratio * random.random())
elif side == 3:
params['pad_right'] = int(width * self.pad_ratio * random.random())
return params
def apply(self, img, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params):
height, width, _ = img.shape
img = A.augmentations.pad_with_params(
img, pad_top, pad_bottom, pad_left, pad_right, border_mode=cv2.BORDER_CONSTANT, value=self.value)
return img
def apply_to_keypoint(self, keypoint, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params):
x, y, angle, scale = keypoint[:4]
return x + pad_left, y + pad_top, angle, scale
def get_transform_init_args_names(self):
return ('value', 'pad_ratio')
class SaltAndPepperNoise(A.DualTransform):
def __init__(self, num_dots, value=(0, 0, 0), p=0.5):
super().__init__(p)
self.num_dots = num_dots
self.value = value
def apply(self, img, **params):
height, width, _ = img.shape
num_dots = random.randrange(self.num_dots + 1)
for i in range(num_dots):
x = random.randrange(height)
y = random.randrange(width)
img[x, y] = self.value
return img
def apply_to_keypoint(self, keypoint, **params):
return keypoint
def get_transform_init_args_names(self):
return ('value', 'num_dots')
class ResizePad(A.DualTransform):
def __init__(self, height, width, interpolation=cv2.INTER_LINEAR, value=(255, 255, 255)):
super(ResizePad, self).__init__(always_apply=True)
self.height = height
self.width = width
self.interpolation = interpolation
self.value = value
def apply(self, img, interpolation=cv2.INTER_LINEAR, **params):
h, w, _ = img.shape
img = A.augmentations.geometric.functional.resize(
img,
height=min(h, self.height),
width=min(w, self.width),
interpolation=interpolation
)
h, w, _ = img.shape
pad_top = (self.height - h) // 2
pad_bottom = (self.height - h) - pad_top
pad_left = (self.width - w) // 2
pad_right = (self.width - w) - pad_left
img = A.augmentations.pad_with_params(
img,
pad_top,
pad_bottom,
pad_left,
pad_right,
border_mode=cv2.BORDER_CONSTANT,
value=self.value,
)
return img
def normalized_grid_distortion(
img,
num_steps=10,
xsteps=(),
ysteps=(),
*args,
**kwargs
):
height, width = img.shape[:2]
# compensate for smaller last steps in source image.
x_step = width // num_steps
last_x_step = min(width, ((num_steps + 1) * x_step)) - (num_steps * x_step)
xsteps[-1] *= last_x_step / x_step
y_step = height // num_steps
last_y_step = min(height, ((num_steps + 1) * y_step)) - (num_steps * y_step)
ysteps[-1] *= last_y_step / y_step
# now normalize such that distortion never leaves image bounds.
tx = width / math.floor(width / num_steps)
ty = height / math.floor(height / num_steps)
xsteps = np.array(xsteps) * (tx / np.sum(xsteps))
ysteps = np.array(ysteps) * (ty / np.sum(ysteps))
# do actual distortion.
return A.augmentations.functional.grid_distortion(img, num_steps, xsteps, ysteps, *args, **kwargs)
class NormalizedGridDistortion(A.augmentations.transforms.GridDistortion):
def apply(self, img, stepsx=(), stepsy=(), interpolation=cv2.INTER_LINEAR, **params):
return normalized_grid_distortion(img, self.num_steps, stepsx, stepsy, interpolation, self.border_mode,
self.value)
def apply_to_mask(self, img, stepsx=(), stepsy=(), **params):
return normalized_grid_distortion(
img, self.num_steps, stepsx, stepsy, cv2.INTER_NEAREST, self.border_mode, self.mask_value)