|
import albumentations as A |
|
from albumentations.augmentations.geometric.functional import safe_rotate_enlarged_img_size, _maybe_process_in_chunks, \ |
|
keypoint_rotate |
|
import cv2 |
|
import math |
|
import random |
|
import numpy as np |
|
|
|
|
|
def safe_rotate( |
|
img: np.ndarray, |
|
angle: int = 0, |
|
interpolation: int = cv2.INTER_LINEAR, |
|
value: int = None, |
|
border_mode: int = cv2.BORDER_REFLECT_101, |
|
): |
|
|
|
old_rows, old_cols = img.shape[:2] |
|
|
|
|
|
image_center = (old_cols / 2, old_rows / 2) |
|
|
|
|
|
new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols) |
|
|
|
|
|
rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) |
|
|
|
|
|
rotation_mat[0, 2] += new_cols / 2 - image_center[0] |
|
rotation_mat[1, 2] += new_rows / 2 - image_center[1] |
|
|
|
|
|
warp_affine_fn = _maybe_process_in_chunks( |
|
cv2.warpAffine, |
|
M=rotation_mat, |
|
dsize=(new_cols, new_rows), |
|
flags=interpolation, |
|
borderMode=border_mode, |
|
borderValue=value, |
|
) |
|
|
|
|
|
rotated_img = warp_affine_fn(img) |
|
|
|
return rotated_img |
|
|
|
|
|
def keypoint_safe_rotate(keypoint, angle, rows, cols): |
|
old_rows = rows |
|
old_cols = cols |
|
|
|
|
|
new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols) |
|
|
|
col_diff = (new_cols - old_cols) / 2 |
|
row_diff = (new_rows - old_rows) / 2 |
|
|
|
|
|
shifted_keypoint = (int(keypoint[0] + col_diff), int(keypoint[1] + row_diff), keypoint[2], keypoint[3]) |
|
|
|
|
|
rotated_keypoint = keypoint_rotate(shifted_keypoint, angle, rows=new_rows, cols=new_cols) |
|
|
|
return rotated_keypoint |
|
|
|
|
|
class SafeRotate(A.SafeRotate): |
|
|
|
def __init__( |
|
self, |
|
limit=90, |
|
interpolation=cv2.INTER_LINEAR, |
|
border_mode=cv2.BORDER_REFLECT_101, |
|
value=None, |
|
mask_value=None, |
|
always_apply=False, |
|
p=0.5, |
|
): |
|
super(SafeRotate, self).__init__( |
|
limit=limit, |
|
interpolation=interpolation, |
|
border_mode=border_mode, |
|
value=value, |
|
mask_value=mask_value, |
|
always_apply=always_apply, |
|
p=p) |
|
|
|
def apply(self, img, angle=0, interpolation=cv2.INTER_LINEAR, **params): |
|
return safe_rotate( |
|
img=img, value=self.value, angle=angle, interpolation=interpolation, border_mode=self.border_mode) |
|
|
|
def apply_to_keypoint(self, keypoint, angle=0, **params): |
|
return keypoint_safe_rotate(keypoint, angle=angle, rows=params["rows"], cols=params["cols"]) |
|
|
|
|
|
class CropWhite(A.DualTransform): |
|
|
|
def __init__(self, value=(255, 255, 255), pad=0, p=1.0): |
|
super(CropWhite, self).__init__(p=p) |
|
self.value = value |
|
self.pad = pad |
|
assert pad >= 0 |
|
|
|
def update_params(self, params, **kwargs): |
|
super().update_params(params, **kwargs) |
|
assert "image" in kwargs |
|
img = kwargs["image"] |
|
height, width, _ = img.shape |
|
x = (img != self.value).sum(axis=2) |
|
if x.sum() == 0: |
|
return params |
|
row_sum = x.sum(axis=1) |
|
top = 0 |
|
while row_sum[top] == 0 and top+1 < height: |
|
top += 1 |
|
bottom = height |
|
while row_sum[bottom-1] == 0 and bottom-1 > top: |
|
bottom -= 1 |
|
col_sum = x.sum(axis=0) |
|
left = 0 |
|
while col_sum[left] == 0 and left+1 < width: |
|
left += 1 |
|
right = width |
|
while col_sum[right-1] == 0 and right-1 > left: |
|
right -= 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
params.update({"crop_top": top, "crop_bottom": height - bottom, |
|
"crop_left": left, "crop_right": width - right}) |
|
return params |
|
|
|
def apply(self, img, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params): |
|
height, width, _ = img.shape |
|
img = img[crop_top:height - crop_bottom, crop_left:width - crop_right] |
|
img = A.augmentations.pad_with_params( |
|
img, self.pad, self.pad, self.pad, self.pad, border_mode=cv2.BORDER_CONSTANT, value=self.value) |
|
return img |
|
|
|
def apply_to_keypoint(self, keypoint, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params): |
|
x, y, angle, scale = keypoint[:4] |
|
return x - crop_left + self.pad, y - crop_top + self.pad, angle, scale |
|
|
|
def get_transform_init_args_names(self): |
|
return ('value', 'pad') |
|
|
|
|
|
class PadWhite(A.DualTransform): |
|
|
|
def __init__(self, pad_ratio=0.2, p=0.5, value=(255, 255, 255)): |
|
super(PadWhite, self).__init__(p=p) |
|
self.pad_ratio = pad_ratio |
|
self.value = value |
|
|
|
def update_params(self, params, **kwargs): |
|
super().update_params(params, **kwargs) |
|
assert "image" in kwargs |
|
img = kwargs["image"] |
|
height, width, _ = img.shape |
|
side = random.randrange(4) |
|
if side == 0: |
|
params['pad_top'] = int(height * self.pad_ratio * random.random()) |
|
elif side == 1: |
|
params['pad_bottom'] = int(height * self.pad_ratio * random.random()) |
|
elif side == 2: |
|
params['pad_left'] = int(width * self.pad_ratio * random.random()) |
|
elif side == 3: |
|
params['pad_right'] = int(width * self.pad_ratio * random.random()) |
|
return params |
|
|
|
def apply(self, img, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params): |
|
height, width, _ = img.shape |
|
img = A.augmentations.pad_with_params( |
|
img, pad_top, pad_bottom, pad_left, pad_right, border_mode=cv2.BORDER_CONSTANT, value=self.value) |
|
return img |
|
|
|
def apply_to_keypoint(self, keypoint, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params): |
|
x, y, angle, scale = keypoint[:4] |
|
return x + pad_left, y + pad_top, angle, scale |
|
|
|
def get_transform_init_args_names(self): |
|
return ('value', 'pad_ratio') |
|
|
|
|
|
class SaltAndPepperNoise(A.DualTransform): |
|
|
|
def __init__(self, num_dots, value=(0, 0, 0), p=0.5): |
|
super().__init__(p) |
|
self.num_dots = num_dots |
|
self.value = value |
|
|
|
def apply(self, img, **params): |
|
height, width, _ = img.shape |
|
num_dots = random.randrange(self.num_dots + 1) |
|
for i in range(num_dots): |
|
x = random.randrange(height) |
|
y = random.randrange(width) |
|
img[x, y] = self.value |
|
return img |
|
|
|
def apply_to_keypoint(self, keypoint, **params): |
|
return keypoint |
|
|
|
def get_transform_init_args_names(self): |
|
return ('value', 'num_dots') |
|
|
|
class ResizePad(A.DualTransform): |
|
|
|
def __init__(self, height, width, interpolation=cv2.INTER_LINEAR, value=(255, 255, 255)): |
|
super(ResizePad, self).__init__(always_apply=True) |
|
self.height = height |
|
self.width = width |
|
self.interpolation = interpolation |
|
self.value = value |
|
|
|
def apply(self, img, interpolation=cv2.INTER_LINEAR, **params): |
|
h, w, _ = img.shape |
|
img = A.augmentations.geometric.functional.resize( |
|
img, |
|
height=min(h, self.height), |
|
width=min(w, self.width), |
|
interpolation=interpolation |
|
) |
|
h, w, _ = img.shape |
|
pad_top = (self.height - h) // 2 |
|
pad_bottom = (self.height - h) - pad_top |
|
pad_left = (self.width - w) // 2 |
|
pad_right = (self.width - w) - pad_left |
|
img = A.augmentations.pad_with_params( |
|
img, |
|
pad_top, |
|
pad_bottom, |
|
pad_left, |
|
pad_right, |
|
border_mode=cv2.BORDER_CONSTANT, |
|
value=self.value, |
|
) |
|
return img |
|
|
|
|
|
def normalized_grid_distortion( |
|
img, |
|
num_steps=10, |
|
xsteps=(), |
|
ysteps=(), |
|
*args, |
|
**kwargs |
|
): |
|
height, width = img.shape[:2] |
|
|
|
|
|
x_step = width // num_steps |
|
last_x_step = min(width, ((num_steps + 1) * x_step)) - (num_steps * x_step) |
|
xsteps[-1] *= last_x_step / x_step |
|
|
|
y_step = height // num_steps |
|
last_y_step = min(height, ((num_steps + 1) * y_step)) - (num_steps * y_step) |
|
ysteps[-1] *= last_y_step / y_step |
|
|
|
|
|
tx = width / math.floor(width / num_steps) |
|
ty = height / math.floor(height / num_steps) |
|
xsteps = np.array(xsteps) * (tx / np.sum(xsteps)) |
|
ysteps = np.array(ysteps) * (ty / np.sum(ysteps)) |
|
|
|
|
|
return A.augmentations.functional.grid_distortion(img, num_steps, xsteps, ysteps, *args, **kwargs) |
|
|
|
|
|
class NormalizedGridDistortion(A.augmentations.transforms.GridDistortion): |
|
def apply(self, img, stepsx=(), stepsy=(), interpolation=cv2.INTER_LINEAR, **params): |
|
return normalized_grid_distortion(img, self.num_steps, stepsx, stepsy, interpolation, self.border_mode, |
|
self.value) |
|
|
|
def apply_to_mask(self, img, stepsx=(), stepsy=(), **params): |
|
return normalized_grid_distortion( |
|
img, self.num_steps, stepsx, stepsy, cv2.INTER_NEAREST, self.border_mode, self.mask_value) |
|
|
|
|