import numpy as np import multiprocessing import rdkit import rdkit.Chem as Chem rdkit.RDLogger.DisableLog('rdApp.*') from SmilesPE.pretokenizer import atomwise_tokenizer def canonicalize_smiles(smiles, ignore_chiral=False, ignore_cistrans=False, replace_rgroup=True): if type(smiles) is not str or smiles == '': return '', False if ignore_cistrans: smiles = smiles.replace('/', '').replace('\\', '') if replace_rgroup: tokens = atomwise_tokenizer(smiles) for j, token in enumerate(tokens): if token[0] == '[' and token[-1] == ']': symbol = token[1:-1] if symbol[0] == 'R' and symbol[1:].isdigit(): tokens[j] = f'[{symbol[1:]}*]' elif Chem.AtomFromSmiles(token) is None: tokens[j] = '*' smiles = ''.join(tokens) try: canon_smiles = Chem.CanonSmiles(smiles, useChiral=(not ignore_chiral)) success = True except: canon_smiles = smiles success = False return canon_smiles, success def convert_smiles_to_canonsmiles( smiles_list, ignore_chiral=False, ignore_cistrans=False, replace_rgroup=True, num_workers=16): with multiprocessing.Pool(num_workers) as p: results = p.starmap(canonicalize_smiles, [(smiles, ignore_chiral, ignore_cistrans, replace_rgroup) for smiles in smiles_list], chunksize=128) canon_smiles, success = zip(*results) return list(canon_smiles), np.mean(success) class SmilesEvaluator(object): def __init__(self, gold_smiles, num_workers=16): self.gold_smiles = gold_smiles self.gold_canon_smiles, self.gold_valid = convert_smiles_to_canonsmiles(gold_smiles, num_workers=num_workers) self.gold_smiles_chiral, _ = convert_smiles_to_canonsmiles(gold_smiles, ignore_chiral=True, num_workers=num_workers) self.gold_smiles_cistrans, _ = convert_smiles_to_canonsmiles(gold_smiles, ignore_cistrans=True, num_workers=num_workers) self.gold_canon_smiles = self._replace_empty(self.gold_canon_smiles) self.gold_smiles_chiral = self._replace_empty(self.gold_smiles_chiral) self.gold_smiles_cistrans = self._replace_empty(self.gold_smiles_cistrans) def _replace_empty(self, smiles_list): """Replace empty SMILES in the gold, otherwise it will be considered correct if both pred and gold is empty.""" return [smiles if smiles is not None and type(smiles) is str and smiles != "" else "" for smiles in smiles_list] def evaluate(self, pred_smiles): results = {} results['gold_valid'] = self.gold_valid # Canon SMILES pred_canon_smiles, pred_valid = convert_smiles_to_canonsmiles(pred_smiles) results['canon_smiles_em'] = (np.array(self.gold_canon_smiles) == np.array(pred_canon_smiles)).mean() results['pred_valid'] = pred_valid # Ignore chirality (Graph exact match) pred_smiles_chiral, _ = convert_smiles_to_canonsmiles(pred_smiles, ignore_chiral=True) results['graph'] = (np.array(self.gold_smiles_chiral) == np.array(pred_smiles_chiral)).mean() # Ignore double bond cis/trans pred_smiles_cistrans, _ = convert_smiles_to_canonsmiles(pred_smiles, ignore_cistrans=True) results['canon_smiles'] = (np.array(self.gold_smiles_cistrans) == np.array(pred_smiles_cistrans)).mean() # Evaluate on molecules with chiral centers chiral = np.array([[g, p] for g, p in zip(self.gold_smiles_cistrans, pred_smiles_cistrans) if '@' in g]) results['chiral_ratio'] = len(chiral) / len(self.gold_smiles) results['chiral'] = (chiral[:, 0] == chiral[:, 1]).mean() if len(chiral) > 0 else -1 return results