GGUF-Playground / app.py
John6666's picture
Upload 2 files
6200ce9 verified
raw
history blame
5.11 kB
import spaces
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
import os
import cv2
huggingface_token = os.environ.get('HF_TOKEN')
# Download the Meta-Llama-3.1-8B-Instruct model
hf_hub_download(
repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/Mistral-Nemo-Instruct-2407-GGUF",
filename="Mistral-Nemo-Instruct-2407-Q5_K_M.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/gemma-2-2b-it-GGUF",
filename="gemma-2-2b-it-Q6_K_L.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/openchat-3.6-8b-20240522-GGUF",
filename="openchat-3.6-8b-20240522-Q6_K.gguf",
local_dir="./models",
token=huggingface_token
)
hf_hub_download(
repo_id="bartowski/Llama-3-Groq-8B-Tool-Use-GGUF",
filename="Llama-3-Groq-8B-Tool-Use-Q6_K.gguf",
local_dir="./models",
token=huggingface_token
)
llm = None
llm_model = None
cv2.setNumThreads(1)
@spaces.GPU()
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
global llm
global llm_model
# Load model only if it's not already loaded or if a new model is selected
if llm is None or llm_model != model:
try:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81, # Adjust based on available GPU resources
n_batch=1024,
n_ctx=8192,
)
llm_model = model
except Exception as e:
return f"Error loading model: {str(e)}"
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add user and assistant messages to the history
for msn in history:
user = {'role': Roles.user, 'content': msn[0]}
assistant = {'role': Roles.assistant, 'content': msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Stream the response
try:
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
except Exception as e:
yield f"Error during response generation: {str(e)}"
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Dropdown([
'Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf',
'Mistral-Nemo-Instruct-2407-Q5_K_M.gguf',
'gemma-2-2b-it-Q6_K_L.gguf',
'openchat-3.6-8b-20240522-Q6_K.gguf',
'Llama-3-Groq-8B-Tool-Use-Q6_K.gguf'
],
value="gemma-2-2b-it-Q6_K_L.gguf",
label="Model"
),
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with lots of Models and LLMs using llama.cpp",
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()