TITANIC / app.py
Campfireman's picture
Rename main.py to app.py
ce8a91a
raw
history blame
1.78 kB
import gradio as gr
import numpy as np
from PIL import Image
import requests
import hopsworks
import joblib
project = hopsworks.login()
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("titanic_modal_more_specs_grad_boosted", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/titanic_model.pkl")
def titanic(pclass,sex,age,sibsp,parch,embarked,fare_per_customer,embarked_remapped,cabin_remapped):
input_list = []
input_list.append(pclass)
input_list.append(sex)
input_list.append(age)
input_list.append(sibsp)
input_list.append(parch)
input_list.append(embarked)
input_list.append(fare_per_customer)
input_list.append(embarked_remapped)
input_list.append(cabin_remapped)
# 'res' is a list of predictions returned as the label.
res = model.predict(np.asarray(input_list).reshape(1, -1))
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
demo = gr.Interface(
fn=titanic,
title="Titanic Predictive Analytics",
description="Predict survivals.",
allow_flagging="never",
inputs=[
gr.inputs.Number(default=1.0, label="pclass"),
gr.inputs.Number(default=1.0, label="gender(male=0, female=1)"),
gr.inputs.Number(default=1.0, label="age"),
gr.inputs.Number(default=1.0, label="sibsp"),
gr.inputs.Number(default=1.0, label="parch"),
gr.inputs.Number(default=1.0, label="embarked(C=1,S=2,Q=3)"),
gr.inputs.Number(default=1.0, label="fare_per_customer"),
gr.inputs.Number(default=1.0, label="cabin_remapped(if the passanger has one cabin =1, else =0)"),
],
outputs=gr.Image(type="pil"))
demo.launch()