File size: 3,968 Bytes
8062140
 
 
 
 
 
59fcb36
8062140
 
 
 
 
f86b580
38d6ec5
d47d510
 
 
ac158aa
59fcb36
 
 
ac158aa
59fcb36
 
 
 
ac158aa
59fcb36
 
38d6ec5
59fcb36
8062140
38d6ec5
 
 
 
 
 
 
 
59fcb36
8062140
 
ac158aa
 
 
38d6ec5
59fcb36
 
 
ac158aa
 
 
38d6ec5
 
59fcb36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d6ec5
59fcb36
 
38d6ec5
 
59fcb36
 
38d6ec5
 
59fcb36
 
38d6ec5
 
 
 
 
 
59fcb36
38d6ec5
 
 
ac158aa
 
 
38d6ec5
ac158aa
8062140
 
59fcb36
8062140
 
 
 
d47d510
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np
import folium
import sklearn.preprocessing as proc
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure

from functions import decode_features, get_weather_data, get_weather_df, get_weather_json_quick
##################

def greet(total_pred_days):
    project = hopsworks.login()
    
    mr=project.get_model_registry()
    model = mr.get_model("temp_model_new", version=1)
    model_dir=model.download()
    
    model1 = mr.get_model("tempmax_model_new", version=1) 
    model_dir1=model1.download()
    model2 = mr.get_model("tempmin_model_new", version=1)
    model_dir2=model2.download()
    
    model = joblib.load(model_dir + "/model_temp_new.pkl")
    model1 = joblib.load(model_dir1 + "/model_tempmax_new.pkl")
    model2 = joblib.load(model_dir2+ "/model_tempmin_new.pkl"
    print("temp_model is now right")

    fs = project.get_feature_store()
    weather_fg = fs.get_or_create_feature_group(
        name = 'weather_fg',
        version = 1
    )

    query = weather_fg.select_all()
    Q = query.read()
    
    str1 = ""
    
    if(total_pred_days == ""):
        return "Empty input"
    
    count = int(total_pred_days) 
    if count > 14:
        str1 += "Warning: 14 days at most. " + '\n'
        count = 14
    if count <0:
        str1 = "Invalid input."
        return str1
    count = count + 1
    
    # Get weather data
    fs = project.get_feature_store()
    print("get the store")
    feature_view = fs.get_feature_view(
        name = 'weathernew_fv',
        version = 1
    )
    print("get the fv")
    
    
    global X
    X = pd.DataFrame()
    
    for i in range(count+1):
        # Get, rename column and rescale
        next_day_date = datetime.today() + timedelta(days=i)
        next_day = next_day_date.strftime ('%Y-%m-%d')
        json = get_weather_json_quick(next_day)
        temp = get_weather_data(json)
        X = X.append(temp, ignore_index=True)
    
    
    # X reshape
    
    X.drop('preciptype', inplace = True, axis = 1)
    X.drop('severerisk', inplace = True, axis = 1)
    X.drop('stations', inplace = True, axis = 1)
    X.drop('sunrise', inplace = True, axis = 1)
    X.drop('sunset', inplace = True, axis = 1)
    X.drop('moonphase', inplace = True, axis = 1)
    X.drop('description', inplace = True, axis = 1)
    X.drop('icon', inplace = True, axis = 1)
    X = X.drop(columns=["sunriseEpoch", "sunsetEpoch", "source", "datetimeEpoch"]).fillna(0) 
    X = X.rename(columns={'pressure':'sealevelpressure'})
    
    # Merge X and query
    Y = X.append(Q, ignore_index=True)
    
    # Data scaling
    Y = Y.drop(columns = ['conditions', 'name', "datetime", "temp", "tempmax", "tempmin"])
    category_cols = ['conditions']
    cat_std_cols = ['feelslikemax','feelslikemin','feelslike','dew','humidity','precip','precipprob','precipcover','snow','snowdepth','windgust','windspeed','winddir','sealevelpressure','cloudcover','visibility','solarradiation','solarenergy','uvindex']
    scaler_std = proc.StandardScaler()
    Y.insert(19,"conditions",0)
    Y.insert(0,"name",0)
    print(Y)
    Y[cat_std_cols] = scaler_std.fit_transform(Y[cat_std_cols])
    Y[category_cols] = scaler_std.fit_transform(Y[category_cols])
    
    # Predict
    preds = model.predict(Y[0:count])
    preds1= model1.predict(Y[0:count])
    preds2= model2.predict(Y[0:count])
    
    for x in range(count):
        if (x != 0):
            str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature: " +str(float(preds[len(preds) - count + x]))+ "\npredicted max temperature: " +str(float(preds1[len(preds1) - count + x]))+ "\npredicted min temperature: " +str(float(preds2[len(preds2) - count + x]))+"\n"
    
    return str1

demo = gr.Interface(fn=greet, inputs = "text", outputs="text")


    
if __name__ == "__main__":
    demo.launch()