File size: 4,977 Bytes
8062140
 
 
 
 
 
 
 
 
 
 
ac158aa
8062140
d47d510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac158aa
8062140
 
 
 
 
 
 
 
 
3ddbf9f
ac158aa
 
3ddbf9f
 
8062140
 
 
ac158aa
8062140
 
 
 
 
ac158aa
 
 
 
 
 
 
 
 
8062140
 
ac158aa
 
 
 
 
8062140
 
 
 
 
 
 
ac158aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8062140
 
 
dec008f
 
b67094f
dec008f
 
8062140
 
 
 
d47d510
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np
import folium
import json
import time
from datetime import timedelta, datetime
from branca.element import Figure

from functions import decode_features, get_model, get_model1, get_model2


def greet(total_pred_days):

    project = hopsworks.login()
    #api = project.get_dataset_api()
    fs = project.get_feature_store()
    feature_view = fs.get_feature_view(
        name = 'weather_fv',
        version = 1
    )

    # The latest available data timestamp
    start_time = 1635112800000

    #start_date = datetime.now() - timedelta(days=1)
    #start_time = int(start_date.timestamp()) * 1000


    X = feature_view.get_batch_data(start_time=start_time)
    latest_date_unix = str(X.datetime.values[0])[:10]
    latest_date = time.ctime(int(latest_date_unix))
    model = get_model(project=project,
                      model_name="temp_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max")
    model1 = get_model1(project=project,
                      model_name="tempmax_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max") 
    model2 = get_model2(project=project,
                      model_name="tempmin_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max")
    X = X.drop(columns=["datetime"]).fillna(0)

    preds = model.predict(X)
    
    preds1= model1.predict(X)
    
    preds2= model2.predict(X)
    

   # cities = [city_tuple[0] for city_tuple in cities_coords.keys()]

    next_day_date = datetime.today() + timedelta(days=1)
    next_day = next_day_date.strftime ('%d/%m/%Y')
    str1 = ""
    
    if(total_pred_days == ""):
        return "Empty input"
    
    count = int(total_pred_days)
    if count > 20:
        str1 += "Warning: 20 days at most. " + '\n'
        count = 20
    if count <0:
        str1 = "Invalid input."
        return str1
    
    for x in range(count):
        if (x != 0):
            str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature:      " +str(int(preds[len(preds) - count + x]))+ " predicted max temperature:      " +str(int(preds1[len(preds1) - count + x]))+ " predicted min temperature:      " +str(int(preds2[len(preds2) - count + x]))+"\n"
    
    #print(str1)
    return str1


demo = gr.Interface(fn=greet, inputs = "text", outputs="text")


    
if __name__ == "__main__":
    demo.launch()

'''
def greet(total_pred_days):

    project = hopsworks.login()
    #api = project.get_dataset_api()
    fs = project.get_feature_store()
    feature_view = fs.get_feature_view(
        name = 'weather_fv',
        version = 1
    )

    # The latest available data timestamp
    start_time = 1635112800000

    #start_date = datetime.now() - timedelta(days=1)
    #start_time = int(start_date.timestamp()) * 1000


    X = feature_view.get_batch_data(start_time=start_time)
    latest_date_unix = str(X.datetime.values[0])[:10]
    latest_date = time.ctime(int(latest_date_unix))
    model = get_model(project=project,
                      model_name="temp_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max")
    model1 = get_model1(project=project,
                      model_name="tempmax_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max") 
    model2 = get_model2(project=project,
                      model_name="tempmin_model",
                      evaluation_metric="f1_score",
                      sort_metrics_by="max")
    X = X.drop(columns=["datetime"]).fillna(0)

    preds = model.predict(X)
    
    preds1= model1.predict(X)
    
    preds2= model2.predict(X)
    

   # cities = [city_tuple[0] for city_tuple in cities_coords.keys()]

    next_day_date = datetime.today() + timedelta(days=1)
    next_day = next_day_date.strftime ('%d/%m/%Y')
    str1 = ""
    
    if(total_pred_days == ""):
        return "Empty input"
    
    count = int(total_pred_days)
    if count > 20:
        str1 += "Warning: 20 days at most. " + '\n'
        count = 20
    if count <0:
        str1 = "Invalid input."
        return str1
    
    for x in range(count):
        if (x != 0):
            str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature:      " +str(int(preds[len(preds) - count + x]))+ " predicted max temperature:      " +str(int(preds1[len(preds1) - count + x]))+ " predicted min temperature:      " +str(int(preds2[len(preds2) - count + x]))+"\n"
    
    #print(str1)
    return str1


demo = gr.Interface(
    fn=greet, 
    inputs=gr.Slider(label="Days of prediction (start from tomorrow)", value=1, minimum=1, maximum=20, step=1),
    outputs=gr.outputs.Textbox(label="Prediction results"),
)


    
if __name__ == "__main__":
    demo.launch()

'''