File size: 4,277 Bytes
69a2a60
 
 
 
 
 
 
 
 
 
 
 
82326ea
69a2a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5f3ef
 
 
82326ea
 
9e5f3ef
82326ea
 
9e5f3ef
82326ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5f3ef
 
 
 
82326ea
 
9e5f3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82326ea
9e5f3ef
 
 
 
 
 
 
 
82326ea
 
9e5f3ef
 
 
 
82326ea
 
9e5f3ef
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from datetime import datetime
import requests
import os
import joblib
import pandas as pd
import json


def decode_features(df, feature_view):
    """Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions"""
    df_res = df.copy()

    print(df_res)
    import inspect

    td_transformation_functions = feature_view._batch_scoring_server._transformation_functions

    res = {}
    for feature_name in td_transformation_functions:
        if feature_name in df_res.columns:
            td_transformation_function = td_transformation_functions[feature_name]
            sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals()
            param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty])
            if td_transformation_function.name == "min_max_scaler":
                df_res[feature_name] = df_res[feature_name].map(
                    lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"])
            elif td_transformation_function.name == "standard_scaler":
                df_res[feature_name] = df_res[feature_name].map(
                    lambda x: x * param_dict['std_dev'] + param_dict["mean"])
            elif td_transformation_function.name == "label_encoder":
                dictionary = param_dict['value_to_index']
                dictionary_ = {v: k for k, v in dictionary.items()}
                df_res[feature_name] = df_res[feature_name].map(
                    lambda x: dictionary_[x])
    return df_res

def get_weather_json(date, WEATHER_API_KEY):
    return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()

def get_weather_csv():
    return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/shanghai?unitGroup=metric&include=days&key=FYYH5HKD9558HBXD2D6KWXDGH&contentType=csv').csv()

def get_weather_json_quick(date):
    return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/shanghai/{date}?unitGroup=metric&include=days&key=FYYH5HKD9558HBXD2D6KWXDGH&contentType=json').json()


def get_weather_data(json):
    #WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
    
    #csv = get_weather_csv()
    data = json['days'][0]
    print("data parsed sccessfully")
    #return [
    #    #json['address'].capitalize(),
    #    data['datetime'],
    #    data['feelslikemax'],
    #    data['feelslikemin'],
    #    data['feelslike'],
    #    data['dew'],
    #    data['humidity'],
    #    data['precip'],
    #    data['precipprob'],
    #    data['precipcover'],
    #    data['snow'],
    #    data['snowdepth'],
    #    data['windgust'],
    #    data['windspeed'],
    #    data['winddir'],
    #    data['pressure'],
    #    data['cloudcover'],
    #    data['visibility'],
    #    data['solarradiation'],
    #    data['solarenergy'],
    #    data['uvindex'],
    #    data['conditions']
    #]
    return data


def get_weather_df(data):
    col_names = [
        'name',
        'datetime',
        'tempmax',
        'tempmin',
        'temp',
        'feelslikemax',
        'feelslikemin',
        'feelslike',
        'dew',
        'humidity',
        'precip',
        'precipprob',
        'precipcover',
        'snow',
        'snowdepth',
        'windgust',
        'windspeed',
        'winddir',
        'sealevelpressure',
        'cloudcover',
        'visibility',
        'solarradiation',
        'solarenergy',
        'uvindex',
        'conditions'
    ]

    

    new_data = pd.DataFrame(
        data,
        columns=col_names
    )
    new_data.datetime = new_data.datetime.apply(timestamp_2_time1)
    #new_data.rename(columes={'pressure':'sealevelpressure'})
    return new_data

def timestamp_2_time1(x):
    dt_obj = datetime.strptime(str(x), '%Y-%m-%d')
    dt_obj = dt_obj.timestamp() * 1000
    return int(dt_obj)

def timestamp_2_time(x):
    dt_obj = datetime.strptime(str(x), '%m/%d/%Y')
    dt_obj = dt_obj.timestamp() * 1000
    return int(dt_obj)