Spaces:
Runtime error
Runtime error
import gradio as gr | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import folium | |
import sklearn.preprocessing as proc | |
import json | |
import time | |
from datetime import timedelta, datetime | |
from branca.element import Figure | |
#from functions import decode_features, get_weather_data, get_weather_df, get_weather_json_quick | |
#import functions | |
def greet(total_pred_days): | |
# print("hi") | |
project = hopsworks.login() | |
# print("connected") | |
# #api = project.get_dataset_api() | |
# | |
# # The latest available data timestamp | |
# start_time = 1649196000000 | |
# # end_time = 1670972400000 | |
#start_date = datetime.now() - timedelta(days=1) | |
#start_time = int(start_date.timestamp()) * 1000 | |
#print("Time Stamp Set. ") | |
#print("latest_date") | |
mr=project.get_model_registry() | |
model = mr.get_model("temp_model_new", version=1) | |
model_dir=model.download() | |
model1 = mr.get_model("tempmax_model_new", version=1) | |
model_dir1=model1.download() | |
model2 = mr.get_model("tempmin_model_new", version=1) | |
model_dir2=model2.download() | |
model = joblib.load(model_dir + "/model_temp_new.pkl") | |
model1 = joblib.load(model_dir1 + "/model_tempmax_new.pkl") | |
model2 = joblib.load(model_dir2+ "/model_tempmin_new.pkl") | |
print("temp_model is now right") | |
#X = feature_view.get_batch_data(start_time=start_time) | |
#latest_date_unix = str(X.datetime.values[0])[:10] | |
#latest_date = time.ctime(int(latest_date_unix)) | |
# cities = [city_tuple[0] for city_tuple in cities_coords.keys()] | |
str1 = "" | |
if(total_pred_days == ""): | |
return "Empty input" | |
count = int(total_pred_days) | |
if count > 14: | |
str1 += "Warning: 14 days at most. " + '\n' | |
count = 14 | |
if count <0: | |
str1 = "Invalid input." | |
return str1 | |
# Get weather data | |
fs = project.get_feature_store() | |
print("get the store") | |
feature_view = fs.get_feature_view( | |
name = 'weathernew_fv', | |
version = 1 | |
) | |
print("get the fv") | |
global X | |
X = pd.DataFrame() | |
for i in range(count+1): | |
# Get, rename column and rescale | |
next_day_date = datetime.today() + timedelta(days=i) | |
next_day = next_day_date.strftime ('%Y-%m-%d') | |
print(next_day) | |
json = get_weather_json_quick(next_day) | |
temp = get_weather_data(json) | |
print("Raw data") | |
print(temp) | |
X = X.append(temp, ignore_index=True) | |
# X reshape | |
X.drop('preciptype', inplace = True, axis = 1) | |
X.drop('severerisk', inplace = True, axis = 1) | |
X.drop('stations', inplace = True, axis = 1) | |
X.drop('sunrise', inplace = True, axis = 1) | |
X.drop('sunset', inplace = True, axis = 1) | |
X.drop('moonphase', inplace = True, axis = 1) | |
X.drop('description', inplace = True, axis = 1) | |
X.drop('icon', inplace = True, axis = 1) | |
X = X.drop(columns=["datetime", "temp", "tempmax", "tempmin", "sunriseEpoch", "sunsetEpoch", "source", "datetimeEpoch", ]).fillna(0) | |
X = X.rename(columns={'pressure':'sealevelpressure'}) | |
X = X.drop(columns = ['conditions']) | |
print("Check dataframe") | |
print(X) | |
print("Data batched.") | |
# Rescale | |
#X = decode_features(X, feature_view=feature_view) | |
# Data scaling | |
#category_cols = ['name','datetime','conditions', 'tempmin', 'tempmax', 'temp'] | |
#mapping_transformers = {col_name:fs.get_transformation_function(name='standard_scaler') for col_name in col_names if col_name not in category_cols} | |
#category_cols = {col_name:fs.get_transformation_function(name='label_encoder') for col_name in category_cols if col_name not in ['datetime', 'tempmin', 'tempmax', 'temp']} | |
#mapping_transformers.update(category_cols) | |
# Data scaling | |
#category_cols = ['conditions'] | |
cat_std_cols = ['feelslikemax','feelslikemin','feelslike','dew','humidity','precip','precipprob','precipcover','snow','snowdepth','windgust','windspeed','winddir','sealevelpressure','cloudcover','visibility','solarradiation','solarenergy','uvindex'] | |
scaler_std = proc.StandardScaler() | |
#scaler_lb = proc.LabelEncoder() | |
X.insert(19,"conditions",0) | |
X[cat_std_cols] = scaler_std.fit_transform(X[cat_std_cols]) | |
#X[category_cols] = scaler_std.transform(X[category_cols]) | |
X.insert(0,"name",0) | |
# Predict | |
preds = model.predict(X) | |
preds1= model1.predict(X) | |
preds2= model2.predict(X) | |
for x in range(count): | |
if (x != 0): | |
str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted temperature: " +str(int(preds[len(preds) - count + x]))+ " predicted max temperature: " +str(int(preds1[len(preds1) - count + x]))+ " predicted min temperature: " +str(int(preds2[len(preds2) - count + x]))+"\n" | |
#print(str1) | |
return str1 | |
demo = gr.Interface(fn=greet, inputs = "text", outputs="text") | |
if __name__ == "__main__": | |
demo.launch() | |