Spaces:
Runtime error
Runtime error
from datetime import datetime | |
import requests | |
import os | |
import joblib | |
import pandas as pd | |
import json | |
def decode_features(df, feature_view): | |
"""Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions""" | |
df_res = df.copy() | |
import inspect | |
td_transformation_functions = feature_view._batch_scoring_server._transformation_functions | |
res = {} | |
for feature_name in td_transformation_functions: | |
if feature_name in df_res.columns: | |
td_transformation_function = td_transformation_functions[feature_name] | |
sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals() | |
param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty]) | |
if td_transformation_function.name == "min_max_scaler": | |
df_res[feature_name] = df_res[feature_name].map( | |
lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"]) | |
elif td_transformation_function.name == "standard_scaler": | |
df_res[feature_name] = df_res[feature_name].map( | |
lambda x: x * param_dict['std_dev'] + param_dict["mean"]) | |
elif td_transformation_function.name == "label_encoder": | |
dictionary = param_dict['value_to_index'] | |
dictionary_ = {v: k for k, v in dictionary.items()} | |
df_res[feature_name] = df_res[feature_name].map( | |
lambda x: dictionary_[x]) | |
return df_res | |
def get_model1(project, model_name, evaluation_metric, sort_metrics_by): | |
"""Retrieve desired model or download it from the Hopsworks Model Registry. | |
In second case, it will be physically downloaded to this directory""" | |
TARGET_FILE = "model_tempmax.pkl" | |
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \ | |
in os.walk('.') for filename in filenames if filename == TARGET_FILE] | |
if list_of_files: | |
model_path = list_of_files[0] | |
model = joblib.load(model_path) | |
else: | |
if not os.path.exists(TARGET_FILE): | |
mr = project.get_model_registry() | |
# get best model based on custom metrics | |
model = mr.get_best_model(model_name, | |
evaluation_metric, | |
sort_metrics_by) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/model_tempmax.pkl") | |
return model | |
def get_model2(project, model_name, evaluation_metric, sort_metrics_by): | |
"""Retrieve desired model or download it from the Hopsworks Model Registry. | |
In second case, it will be physically downloaded to this directory""" | |
TARGET_FILE = "model_tempmin.pkl" | |
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \ | |
in os.walk('.') for filename in filenames if filename == TARGET_FILE] | |
if list_of_files: | |
model_path = list_of_files[0] | |
model = joblib.load(model_path) | |
else: | |
if not os.path.exists(TARGET_FILE): | |
mr = project.get_model_registry() | |
# get best model based on custom metrics | |
model = mr.get_best_model(model_name, | |
evaluation_metric, | |
sort_metrics_by) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/model_tempmin.pkl") | |
return model | |
def get_model(project, model_name, evaluation_metric, sort_metrics_by): | |
"""Retrieve desired model or download it from the Hopsworks Model Registry. | |
In second case, it will be physically downloaded to this directory""" | |
TARGET_FILE = "model_temp.pkl" | |
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \ | |
in os.walk('.') for filename in filenames if filename == TARGET_FILE] | |
if list_of_files: | |
model_path = list_of_files[0] | |
model = joblib.load(model_path) | |
else: | |
if not os.path.exists(TARGET_FILE): | |
mr = project.get_model_registry() | |
# get best model based on custom metrics | |
model = mr.get_best_model(model_name, | |
evaluation_metric, | |
sort_metrics_by) | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/model_temp.pkl") | |
return model | |