pilev2_pipeline / app.py
ncoop57
Have initial setup of layout and fake data
4c20fbb
raw
history blame
10.1 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
# ai4code_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AI4Code")
# amps_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AMPS")
# apache_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/ASFPublicMail")
# books3_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Books3")
# cp_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/CPDataset")
# dmmath_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/DMMath")
# discourse_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Discourse")
# wiki_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Enwiki")
# euro_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/EuroParliamentProceedings")
# freelaw_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/FreeLaw_Options")
# ghdiffs_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/GitHubDiff")
# ghissues_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/GitHubIssues")
# gutenberg_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/Gutenberg")
# leet_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/LeetCode")
# pileoflaw_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/PileOfLaw")
# pubmed_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/PubMed")
# s2orc_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/S2ORC")
# se_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/StackExchange")
# usenet_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/USENET")
# uspto_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/USPTO")
# ubuntuirc_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/UbuntuIRC")
# arxiv_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/arXiv")
dataset_data = {
"AI4Code": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"AMPS": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"ASFPublicMail": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"Books3": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"CPDataset": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"DMMath": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"Discourse": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"Enwiki": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"EuroParliamentProceedings": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"FreeLaw_Options": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"GitHubDiff": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"GitHubIssues": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"Gutenberg": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"LeetCode": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"PileOfLaw": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"PubMed": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"S2ORC": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"StackExchange": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"USENET": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"USPTO": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"UbuntuIRC": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
"arXiv": {
# create fake data for the different ratios
"word_rep_ratios": np.random.randn(1000),
"char_rep_ratios": np.random.randn(1000),
"flagged_word_ratios": np.random.randn(1000),
"num_words": np.random.randint(0, 1000, 1000),
},
}
def plt_plot(threshold, x):
# prepare some data for a histogram
# x = np.random.randn(1000)
# create a figure
fig = plt.figure()
# add a subplot
ax = fig.add_subplot(111)
# plot some data
ax.hist(x, bins=50)
# plot red dashed line at threshold
ax.axvline(threshold, color='r', linestyle='dashed', linewidth=2)
plt.title("Histogram of random data")
plt.xlabel("Value")
plt.ylabel("Frequency")
return fig
# x = ["Math", "Business", "Statistics", "IT", "Commerce"]
# y = [68, 73, 82, 74, 85]
# # create a new plot
# plt.rcParams['figure.figsize'] = 6,4
# fig = plt.figure()
# ax = fig.add_axes([0,0,1,1])
# ax.bar(x, y)
# plot red dashed line at threshold
# plt.axhline(y=threshold, color='r', linestyle='--')
# plt.title("Marks per subject")
# plt.xlabel("Subject")
# plt.ylabel("Score")
# return fig
with gr.Blocks() as demo:
dataset = gr.Radio(list(dataset_data.keys()), label="Dataset")
with gr.Tab("Character Repetition Ratio"):
# plot some random data
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=100, label="Threshold")
calculate = gr.Button("Calculate")
calculate.click(plt_plot, [threshold, dataset_data[dataset].char_rep_ratios], plot)
with gr.Tab("Word Repetition Ratio"):# plot some random data
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
calculate.click(plt_plot, [threshold, dataset_data[dataset].word_rep_ratios], plot)
with gr.Tab("Flagged Word Ratio"):# plot some random data
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
calculate.click(plt_plot, [threshold, dataset_data[dataset].flagged_word_ratios], plot)
if __name__ == "__main__":
demo.launch(share=True)