Spaces:
Runtime error
Runtime error
ncoop57
commited on
Commit
•
e0be252
1
Parent(s):
4671e61
Add ability to check examples that would be filtered
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import matplotlib.pyplot as plt
|
4 |
import numpy as np
|
5 |
from functools import partial
|
6 |
from datasets import load_dataset
|
7 |
-
from pathlib import Path
|
8 |
|
9 |
dataset_names = [
|
10 |
"AI4Code",
|
@@ -43,13 +43,13 @@ for name in dataset_names:
|
|
43 |
dataset_data[name] = {
|
44 |
"ds": ds,
|
45 |
"word_rep_ratios": np.random.randn(len(ds)),
|
46 |
-
"
|
47 |
-
"
|
48 |
}
|
49 |
|
50 |
-
def plt_plot(
|
51 |
plt.close("all")
|
52 |
-
x = dataset_data[dataset][
|
53 |
# calculate percentage of data that will be removed given threshold
|
54 |
perc = np.sum(x > threshold) / len(x)
|
55 |
# create a figure
|
@@ -69,35 +69,53 @@ def plt_plot(ratio, dataset, threshold):
|
|
69 |
plt.tight_layout()
|
70 |
return fig
|
71 |
|
72 |
-
def check_filtered():
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
dataset = gr.Radio(dataset_names, label="Dataset", value="arXiv")
|
77 |
-
print(dataset.value)
|
78 |
|
79 |
-
with gr.Tab("Character Repetition
|
80 |
# plot some random data
|
81 |
plot = gr.Plot()
|
82 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
83 |
calculate = gr.Button("Calculate")
|
84 |
check = gr.Button("Check Filtered Data")
|
85 |
-
|
|
|
86 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
|
|
|
|
87 |
|
88 |
-
with gr.Tab("Word Repetition
|
89 |
plot = gr.Plot()
|
90 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
91 |
calculate = gr.Button("Calculate")
|
|
|
|
|
92 |
plot_fn = partial(plt_plot, "word_rep_ratios")
|
93 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
|
|
|
|
94 |
|
95 |
-
with gr.Tab("Flagged Word
|
96 |
plot = gr.Plot()
|
97 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
98 |
calculate = gr.Button("Calculate")
|
99 |
-
|
|
|
|
|
100 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
import gradio as gr
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
from functools import partial
|
7 |
from datasets import load_dataset
|
|
|
8 |
|
9 |
dataset_names = [
|
10 |
"AI4Code",
|
|
|
43 |
dataset_data[name] = {
|
44 |
"ds": ds,
|
45 |
"word_rep_ratios": np.random.randn(len(ds)),
|
46 |
+
"check_char_repetition_criteria": np.array(ds["check_char_repetition_criteria"]),
|
47 |
+
"check_flagged_words_criteria": np.array(ds["check_flagged_words_criteria"]),
|
48 |
}
|
49 |
|
50 |
+
def plt_plot(criteria, dataset, threshold):
|
51 |
plt.close("all")
|
52 |
+
x = dataset_data[dataset][criteria]
|
53 |
# calculate percentage of data that will be removed given threshold
|
54 |
perc = np.sum(x > threshold) / len(x)
|
55 |
# create a figure
|
|
|
69 |
plt.tight_layout()
|
70 |
return fig
|
71 |
|
72 |
+
def check_filtered(criteria, dataset, threshold):
|
73 |
+
ds = dataset_data[dataset]["ds"]
|
74 |
+
|
75 |
+
filtered_ds = ds.filter(lambda x: x[criteria] > threshold)
|
76 |
+
if len(filtered_ds) == 0:
|
77 |
+
return "No examples found"
|
78 |
+
# get random sample of 1
|
79 |
+
sample = filtered_ds.select([random.randint(0, len(filtered_ds) - 1)])["text"][0]
|
80 |
+
|
81 |
+
return sample
|
82 |
|
83 |
with gr.Blocks() as demo:
|
84 |
dataset = gr.Radio(dataset_names, label="Dataset", value="arXiv")
|
|
|
85 |
|
86 |
+
with gr.Tab("Character Repetition Criteria"):
|
87 |
# plot some random data
|
88 |
plot = gr.Plot()
|
89 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
90 |
calculate = gr.Button("Calculate")
|
91 |
check = gr.Button("Check Filtered Data")
|
92 |
+
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
|
93 |
+
plot_fn = partial(plt_plot, "check_char_repetition_criteria")
|
94 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
95 |
+
check_fn = partial(check_filtered, "check_char_repetition_criteria")
|
96 |
+
check.click(check_fn, [dataset, threshold], filtered_data)
|
97 |
|
98 |
+
with gr.Tab("Word Repetition Criteria"):# plot some random data
|
99 |
plot = gr.Plot()
|
100 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
101 |
calculate = gr.Button("Calculate")
|
102 |
+
check = gr.Button("Check Filtered Data")
|
103 |
+
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
|
104 |
plot_fn = partial(plt_plot, "word_rep_ratios")
|
105 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
106 |
+
check_fn = partial(check_filtered, "word_rep_ratios")
|
107 |
+
check.click(check_fn, [dataset, threshold], filtered_data)
|
108 |
|
109 |
+
with gr.Tab("Flagged Word Criteria"):# plot some random data
|
110 |
plot = gr.Plot()
|
111 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
112 |
calculate = gr.Button("Calculate")
|
113 |
+
check = gr.Button("Check Filtered Data")
|
114 |
+
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
|
115 |
+
plot_fn = partial(plt_plot, "check_flagged_words_criteria")
|
116 |
calculate.click(plot_fn, [dataset, threshold], plot)
|
117 |
+
check_fn = partial(check_filtered, "check_flagged_words_criteria")
|
118 |
+
check.click(check_fn, [dataset, threshold], filtered_data)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
demo.launch()
|