Spaces:
Runtime error
Runtime error
Upload 21 files
Browse files- FaceCropper.py +119 -0
- crop.py +84 -0
- models/__init__.py +0 -0
- models/common.py +118 -0
- models/experimental.py +145 -0
- models/export.py +74 -0
- models/hub/yolov3-spp.yaml +51 -0
- models/hub/yolov5-fpn.yaml +42 -0
- models/hub/yolov5-panet.yaml +48 -0
- models/yolo.py +259 -0
- models/yolov5l.yaml +48 -0
- models/yolov5m.yaml +48 -0
- models/yolov5s.yaml +48 -0
- models/yolov5x.yaml +48 -0
- requirements.txt +10 -0
- utils/__init__.py +0 -0
- utils/activations.py +69 -0
- utils/datasets.py +907 -0
- utils/general.py +1263 -0
- utils/google_utils.py +107 -0
- utils/torch_utils.py +226 -0
FaceCropper.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import torch.backends.cudnn as cudnn
|
7 |
+
from numpy import random
|
8 |
+
|
9 |
+
from models.experimental import attempt_load
|
10 |
+
from utils.datasets import LoadStreams, LoadImages
|
11 |
+
from utils.general import (
|
12 |
+
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer)
|
13 |
+
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
import huggingface_hub
|
17 |
+
|
18 |
+
from crop import crop
|
19 |
+
|
20 |
+
class FaceCrop:
|
21 |
+
def __init__(self):
|
22 |
+
self.device = select_device()
|
23 |
+
self.half = self.device.type != 'cpu'
|
24 |
+
self.results = {}
|
25 |
+
|
26 |
+
def load_dataset(self, source):
|
27 |
+
self.source = source
|
28 |
+
self.dataset = LoadImages(source)
|
29 |
+
print(f'Successfully load {source}')
|
30 |
+
|
31 |
+
def load_model(self, model):
|
32 |
+
self.model = attempt_load(model, map_location=self.device)
|
33 |
+
if self.half:
|
34 |
+
self.model.half()
|
35 |
+
print(f'Successfully load model weights from {model}')
|
36 |
+
|
37 |
+
def set_crop_config(self, target_size, mode=0, face_ratio=3, threshold=1.5):
|
38 |
+
self.target_size = target_size
|
39 |
+
self.mode = mode
|
40 |
+
self.face_ratio = face_ratio
|
41 |
+
self.threshold = threshold
|
42 |
+
|
43 |
+
def info(self):
|
44 |
+
attributes = dir(self)
|
45 |
+
for attribute in attributes:
|
46 |
+
if not attribute.startswith('__') and not callable(getattr(self, attribute)):
|
47 |
+
value = getattr(self, attribute)
|
48 |
+
print(attribute, " = ", value)
|
49 |
+
|
50 |
+
def process(self):
|
51 |
+
for path, img, im0s, vid_cap in self.dataset:
|
52 |
+
img = torch.from_numpy(img).to(self.device)
|
53 |
+
img = img.half() if self.half else img.float() # uint8 to fp16/32
|
54 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
55 |
+
if img.ndimension() == 3:
|
56 |
+
img = img.unsqueeze(0)
|
57 |
+
|
58 |
+
# Inference
|
59 |
+
pred = self.model(img, augment=False)[0]
|
60 |
+
|
61 |
+
# Apply NMS
|
62 |
+
pred = non_max_suppression(pred)
|
63 |
+
|
64 |
+
# Process detections
|
65 |
+
for i, det in enumerate(pred): # detections per image
|
66 |
+
|
67 |
+
p, s, im0 = path, '', im0s
|
68 |
+
|
69 |
+
in_path = str(Path(self.source) / Path(p).name)
|
70 |
+
|
71 |
+
#txt_path = str(Path(out) / Path(p).stem)
|
72 |
+
s += '%gx%g ' % img.shape[2:] # print string
|
73 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
74 |
+
|
75 |
+
if det is not None and len(det):
|
76 |
+
# Rescale boxes from img_size to im0 size
|
77 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
78 |
+
|
79 |
+
# Write results
|
80 |
+
ind = 0
|
81 |
+
for *xyxy, conf, cls in det:
|
82 |
+
if conf > 0.6: # Write to file
|
83 |
+
out_path = os.path.join(str(Path(self.out_folder)), Path(p).name.replace('.', '_'+str(ind)+'.'))
|
84 |
+
|
85 |
+
x, y, w, h = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
|
86 |
+
self.results[ind] = crop(in_path, (x, y), out_path, mode=self.mode, size=self.target_size, box=(w, h), face_ratio=self.face_ratio, shreshold=self.threshold)
|
87 |
+
|
88 |
+
ind += 1
|
89 |
+
|
90 |
+
def run(img, mode, width, height):
|
91 |
+
face_crop_pipeline.set_crop_config(mode=mode, target_size=(width,height))
|
92 |
+
face_crop_pipeline.process
|
93 |
+
return face_crop_pipeline.results[0]
|
94 |
+
|
95 |
+
if __name__ == '__main__':
|
96 |
+
model_path = huggingface_hub.hf_hub_download("Carzit/yolo5x_anime", "yolo5x_anime.pt")
|
97 |
+
face_crop_pipeline = FaceCrop()
|
98 |
+
face_crop_pipeline.load_model(model_path)
|
99 |
+
|
100 |
+
|
101 |
+
app = gr.Blocks()
|
102 |
+
with app:
|
103 |
+
gr.Markdown("# Anime Face Crop\n\n"
|
104 |
+
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.animeseg)\n\n"
|
105 |
+
"demo for [https://github.com/SkyTNT/anime-segmentation/](https://github.com/SkyTNT/anime-segmentation/)")
|
106 |
+
with gr.Row():
|
107 |
+
input_img = gr.Image(label="input image")
|
108 |
+
output_img = gr.Image(label="result", image_mode="RGB")
|
109 |
+
crop_mode = gr.Dropdown([0, 1, 2, 3], label="Crop Mode", info="0:Auto; 1:No Scale; 2:Full Screen; 3:Fixed Face Ratio")
|
110 |
+
tgt_width = gr.Slider(10, 2048, value=512, label="Width")
|
111 |
+
tgt_height = gr.Slider(10, 2048, value=512, label="Height")
|
112 |
+
|
113 |
+
run_btn = gr.Button(variant="primary")
|
114 |
+
|
115 |
+
run_btn.click(run, [input_img, crop_mode, tgt_width, tgt_height], [output_img])
|
116 |
+
app.launch()
|
117 |
+
|
118 |
+
|
119 |
+
|
crop.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def crop(img, point, mode=0, size=(512, 512), box=None, face_ratio=3, shreshold=1.5):
|
7 |
+
img_width, img_height = img.size
|
8 |
+
tgt_width, tgt_height = size
|
9 |
+
point = (point[0]*img_width, point[1]*img_height)
|
10 |
+
|
11 |
+
# mode 0 : automatic
|
12 |
+
if mode == 0:
|
13 |
+
if box is None:
|
14 |
+
raise RuntimeError('face bax parameter expected: missing box=(width, height)')
|
15 |
+
if img_width < tgt_width or img_height < tgt_height:
|
16 |
+
mode = 1
|
17 |
+
elif face_ratio ** 2 * shreshold ** 2 * box[0] * box[1] * img_width * img_height < tgt_width * tgt_height:
|
18 |
+
mode = 2
|
19 |
+
else:
|
20 |
+
mode = 3
|
21 |
+
|
22 |
+
# mode 1 : no scale
|
23 |
+
if mode == 1:
|
24 |
+
pass
|
25 |
+
|
26 |
+
# mode 2 : full screen - crop as largr as possible
|
27 |
+
if mode == 2:
|
28 |
+
if tgt_width/img_width > tgt_height/img_height:
|
29 |
+
r = tgt_height / tgt_width
|
30 |
+
tgt_width = img_width
|
31 |
+
tgt_height = round(tgt_width * r)
|
32 |
+
else:
|
33 |
+
r = tgt_width / tgt_height
|
34 |
+
tgt_height = img_height
|
35 |
+
tgt_width = round(tgt_height * r)
|
36 |
+
|
37 |
+
# mode 3 : fixed face ratio
|
38 |
+
if mode == 3:
|
39 |
+
if box is None:
|
40 |
+
raise RuntimeError('face bax parameter expected: missing box=(width, height)')
|
41 |
+
box_width = box[0] * img_height
|
42 |
+
box_height = box[1] * img_height
|
43 |
+
if box_width/tgt_width > box_height/tgt_width:
|
44 |
+
r = tgt_height / tgt_width
|
45 |
+
tgt_width = round(box_width * face_ratio)
|
46 |
+
tgt_height = round(tgt_width * r)
|
47 |
+
else:
|
48 |
+
r = tgt_width / tgt_height
|
49 |
+
tgt_height = round(box_height * face_ratio)
|
50 |
+
tgt_width = round(tgt_height * r)
|
51 |
+
|
52 |
+
|
53 |
+
# upscale raw image if target size is over raw image size
|
54 |
+
if img_width < tgt_width or img_height < tgt_height:
|
55 |
+
if img_width < img_height:
|
56 |
+
img_height = round(tgt_width * img_height / img_width)
|
57 |
+
img_width = tgt_width
|
58 |
+
img = img.resize((img_width, img_height))
|
59 |
+
else:
|
60 |
+
img_width = round(tgt_height * img_width / img_height)
|
61 |
+
img_height = tgt_height
|
62 |
+
img = img.resize((img_width, img_height))
|
63 |
+
|
64 |
+
left = point[0] - tgt_width // 2
|
65 |
+
top = point[1] - tgt_height // 2
|
66 |
+
right = point[0] + tgt_width // 2
|
67 |
+
bottom = point[1] + tgt_height // 2
|
68 |
+
|
69 |
+
if left < 0:
|
70 |
+
right -= left
|
71 |
+
left = 0
|
72 |
+
if right > img_width:
|
73 |
+
left -= (right-img_width)
|
74 |
+
right = img_width
|
75 |
+
if top < 0:
|
76 |
+
bottom -= top
|
77 |
+
top = 0
|
78 |
+
if bottom > img_height:
|
79 |
+
top -= (bottom-img_height)
|
80 |
+
bottom = img_height
|
81 |
+
|
82 |
+
cropped_img = img.crop((left, top, right, bottom))
|
83 |
+
cropped_img = cropped_img.resize(size)
|
84 |
+
return np.ndarray(cropped_img)
|
models/__init__.py
ADDED
File without changes
|
models/common.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains modules common to various models
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
|
8 |
+
def autopad(k, p=None): # kernel, padding
|
9 |
+
# Pad to 'same'
|
10 |
+
if p is None:
|
11 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
12 |
+
return p
|
13 |
+
|
14 |
+
|
15 |
+
def DWConv(c1, c2, k=1, s=1, act=True):
|
16 |
+
# Depthwise convolution
|
17 |
+
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
18 |
+
|
19 |
+
|
20 |
+
class Conv(nn.Module):
|
21 |
+
# Standard convolution
|
22 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
23 |
+
super(Conv, self).__init__()
|
24 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
25 |
+
self.bn = nn.BatchNorm2d(c2)
|
26 |
+
self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
return self.act(self.bn(self.conv(x)))
|
30 |
+
|
31 |
+
def fuseforward(self, x):
|
32 |
+
return self.act(self.conv(x))
|
33 |
+
|
34 |
+
|
35 |
+
class Bottleneck(nn.Module):
|
36 |
+
# Standard bottleneck
|
37 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
38 |
+
super(Bottleneck, self).__init__()
|
39 |
+
c_ = int(c2 * e) # hidden channels
|
40 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
41 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
42 |
+
self.add = shortcut and c1 == c2
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
46 |
+
|
47 |
+
|
48 |
+
class BottleneckCSP(nn.Module):
|
49 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
50 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
51 |
+
super(BottleneckCSP, self).__init__()
|
52 |
+
c_ = int(c2 * e) # hidden channels
|
53 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
54 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
55 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
56 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
57 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
58 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
59 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
63 |
+
y2 = self.cv2(x)
|
64 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
65 |
+
|
66 |
+
|
67 |
+
class SPP(nn.Module):
|
68 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
69 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
70 |
+
super(SPP, self).__init__()
|
71 |
+
c_ = c1 // 2 # hidden channels
|
72 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
73 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
74 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = self.cv1(x)
|
78 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
79 |
+
|
80 |
+
|
81 |
+
class Focus(nn.Module):
|
82 |
+
# Focus wh information into c-space
|
83 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
84 |
+
super(Focus, self).__init__()
|
85 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
86 |
+
|
87 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
88 |
+
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
89 |
+
|
90 |
+
|
91 |
+
class Concat(nn.Module):
|
92 |
+
# Concatenate a list of tensors along dimension
|
93 |
+
def __init__(self, dimension=1):
|
94 |
+
super(Concat, self).__init__()
|
95 |
+
self.d = dimension
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
return torch.cat(x, self.d)
|
99 |
+
|
100 |
+
|
101 |
+
class Flatten(nn.Module):
|
102 |
+
# Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
|
103 |
+
@staticmethod
|
104 |
+
def forward(x):
|
105 |
+
return x.view(x.size(0), -1)
|
106 |
+
|
107 |
+
|
108 |
+
class Classify(nn.Module):
|
109 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
110 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
111 |
+
super(Classify, self).__init__()
|
112 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
113 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # to x(b,c2,1,1)
|
114 |
+
self.flat = Flatten()
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
118 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
models/experimental.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains experimental modules
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from models.common import Conv, DWConv
|
8 |
+
from utils.google_utils import attempt_download
|
9 |
+
|
10 |
+
|
11 |
+
class CrossConv(nn.Module):
|
12 |
+
# Cross Convolution Downsample
|
13 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
14 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
15 |
+
super(CrossConv, self).__init__()
|
16 |
+
c_ = int(c2 * e) # hidden channels
|
17 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
18 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
19 |
+
self.add = shortcut and c1 == c2
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
23 |
+
|
24 |
+
|
25 |
+
class C3(nn.Module):
|
26 |
+
# Cross Convolution CSP
|
27 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
28 |
+
super(C3, self).__init__()
|
29 |
+
c_ = int(c2 * e) # hidden channels
|
30 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
31 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
32 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
33 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
34 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
35 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
36 |
+
self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
40 |
+
y2 = self.cv2(x)
|
41 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
42 |
+
|
43 |
+
|
44 |
+
class Sum(nn.Module):
|
45 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
46 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
47 |
+
super(Sum, self).__init__()
|
48 |
+
self.weight = weight # apply weights boolean
|
49 |
+
self.iter = range(n - 1) # iter object
|
50 |
+
if weight:
|
51 |
+
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
y = x[0] # no weight
|
55 |
+
if self.weight:
|
56 |
+
w = torch.sigmoid(self.w) * 2
|
57 |
+
for i in self.iter:
|
58 |
+
y = y + x[i + 1] * w[i]
|
59 |
+
else:
|
60 |
+
for i in self.iter:
|
61 |
+
y = y + x[i + 1]
|
62 |
+
return y
|
63 |
+
|
64 |
+
|
65 |
+
class GhostConv(nn.Module):
|
66 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
67 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
68 |
+
super(GhostConv, self).__init__()
|
69 |
+
c_ = c2 // 2 # hidden channels
|
70 |
+
self.cv1 = Conv(c1, c_, k, s, g, act)
|
71 |
+
self.cv2 = Conv(c_, c_, 5, 1, c_, act)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
y = self.cv1(x)
|
75 |
+
return torch.cat([y, self.cv2(y)], 1)
|
76 |
+
|
77 |
+
|
78 |
+
class GhostBottleneck(nn.Module):
|
79 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
80 |
+
def __init__(self, c1, c2, k, s):
|
81 |
+
super(GhostBottleneck, self).__init__()
|
82 |
+
c_ = c2 // 2
|
83 |
+
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
84 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
85 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
86 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
87 |
+
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
return self.conv(x) + self.shortcut(x)
|
91 |
+
|
92 |
+
|
93 |
+
class MixConv2d(nn.Module):
|
94 |
+
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
95 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
96 |
+
super(MixConv2d, self).__init__()
|
97 |
+
groups = len(k)
|
98 |
+
if equal_ch: # equal c_ per group
|
99 |
+
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
100 |
+
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
101 |
+
else: # equal weight.numel() per group
|
102 |
+
b = [c2] + [0] * groups
|
103 |
+
a = np.eye(groups + 1, groups, k=-1)
|
104 |
+
a -= np.roll(a, 1, axis=1)
|
105 |
+
a *= np.array(k) ** 2
|
106 |
+
a[0] = 1
|
107 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
108 |
+
|
109 |
+
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
110 |
+
self.bn = nn.BatchNorm2d(c2)
|
111 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
115 |
+
|
116 |
+
|
117 |
+
class Ensemble(nn.ModuleList):
|
118 |
+
# Ensemble of models
|
119 |
+
def __init__(self):
|
120 |
+
super(Ensemble, self).__init__()
|
121 |
+
|
122 |
+
def forward(self, x, augment=False):
|
123 |
+
y = []
|
124 |
+
for module in self:
|
125 |
+
y.append(module(x, augment)[0])
|
126 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
127 |
+
# y = torch.cat(y, 1) # nms ensemble
|
128 |
+
y = torch.stack(y).mean(0) # mean ensemble
|
129 |
+
return y, None # inference, train output
|
130 |
+
|
131 |
+
|
132 |
+
def attempt_load(weights, map_location=None):
|
133 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
134 |
+
model = Ensemble()
|
135 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
136 |
+
attempt_download(w)
|
137 |
+
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
|
138 |
+
|
139 |
+
if len(model) == 1:
|
140 |
+
return model[-1] # return model
|
141 |
+
else:
|
142 |
+
print('Ensemble created with %s\n' % weights)
|
143 |
+
for k in ['names', 'stride']:
|
144 |
+
setattr(model, k, getattr(model[-1], k))
|
145 |
+
return model # return ensemble
|
models/export.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
2 |
+
|
3 |
+
Usage:
|
4 |
+
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
5 |
+
"""
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from utils.google_utils import attempt_download
|
12 |
+
|
13 |
+
if __name__ == '__main__':
|
14 |
+
parser = argparse.ArgumentParser()
|
15 |
+
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
|
16 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
|
17 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
18 |
+
opt = parser.parse_args()
|
19 |
+
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
20 |
+
print(opt)
|
21 |
+
|
22 |
+
# Input
|
23 |
+
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
|
24 |
+
|
25 |
+
# Load PyTorch model
|
26 |
+
attempt_download(opt.weights)
|
27 |
+
model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
|
28 |
+
model.eval()
|
29 |
+
model.model[-1].export = True # set Detect() layer export=True
|
30 |
+
y = model(img) # dry run
|
31 |
+
|
32 |
+
# TorchScript export
|
33 |
+
try:
|
34 |
+
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
35 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
36 |
+
ts = torch.jit.trace(model, img)
|
37 |
+
ts.save(f)
|
38 |
+
print('TorchScript export success, saved as %s' % f)
|
39 |
+
except Exception as e:
|
40 |
+
print('TorchScript export failure: %s' % e)
|
41 |
+
|
42 |
+
# ONNX export
|
43 |
+
try:
|
44 |
+
import onnx
|
45 |
+
|
46 |
+
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
47 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
48 |
+
model.fuse() # only for ONNX
|
49 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
50 |
+
output_names=['classes', 'boxes'] if y is None else ['output'])
|
51 |
+
|
52 |
+
# Checks
|
53 |
+
onnx_model = onnx.load(f) # load onnx model
|
54 |
+
onnx.checker.check_model(onnx_model) # check onnx model
|
55 |
+
print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
56 |
+
print('ONNX export success, saved as %s' % f)
|
57 |
+
except Exception as e:
|
58 |
+
print('ONNX export failure: %s' % e)
|
59 |
+
|
60 |
+
# CoreML export
|
61 |
+
try:
|
62 |
+
import coremltools as ct
|
63 |
+
|
64 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
65 |
+
# convert model from torchscript and apply pixel scaling as per detect.py
|
66 |
+
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
67 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
68 |
+
model.save(f)
|
69 |
+
print('CoreML export success, saved as %s' % f)
|
70 |
+
except Exception as e:
|
71 |
+
print('CoreML export failure: %s' % e)
|
72 |
+
|
73 |
+
# Finish
|
74 |
+
print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
|
models/hub/yolov3-spp.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3-SPP head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
models/hub/yolov5-fpn.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, Bottleneck, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 6, BottleneckCSP, [1024]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 FPN head
|
28 |
+
head:
|
29 |
+
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
|
30 |
+
|
31 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
|
35 |
+
|
36 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
|
40 |
+
|
41 |
+
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
42 |
+
]
|
models/hub/yolov5-panet.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [116,90, 156,198, 373,326] # P5/32
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [10,13, 16,30, 33,23] # P3/8
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 PANet head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
|
48 |
+
]
|
models/yolo.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
from copy import deepcopy
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat
|
10 |
+
from models.experimental import MixConv2d, CrossConv, C3
|
11 |
+
from utils.general import check_anchor_order, make_divisible, check_file
|
12 |
+
from utils.torch_utils import (
|
13 |
+
time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)
|
14 |
+
|
15 |
+
|
16 |
+
class Detect(nn.Module):
|
17 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
18 |
+
super(Detect, self).__init__()
|
19 |
+
self.stride = None # strides computed during build
|
20 |
+
self.nc = nc # number of classes
|
21 |
+
self.no = nc + 5 # number of outputs per anchor
|
22 |
+
self.nl = len(anchors) # number of detection layers
|
23 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
24 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
25 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
26 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
27 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
28 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
29 |
+
self.export = False # onnx export
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
# x = x.copy() # for profiling
|
33 |
+
z = [] # inference output
|
34 |
+
self.training |= self.export
|
35 |
+
for i in range(self.nl):
|
36 |
+
x[i] = self.m[i](x[i]) # conv
|
37 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
38 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
39 |
+
|
40 |
+
if not self.training: # inference
|
41 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
42 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
43 |
+
|
44 |
+
y = x[i].sigmoid()
|
45 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
46 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
47 |
+
z.append(y.view(bs, -1, self.no))
|
48 |
+
|
49 |
+
return x if self.training else (torch.cat(z, 1), x)
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def _make_grid(nx=20, ny=20):
|
53 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
54 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
55 |
+
|
56 |
+
|
57 |
+
class Model(nn.Module):
|
58 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
|
59 |
+
super(Model, self).__init__()
|
60 |
+
if isinstance(cfg, dict):
|
61 |
+
self.yaml = cfg # model dict
|
62 |
+
else: # is *.yaml
|
63 |
+
import yaml # for torch hub
|
64 |
+
self.yaml_file = Path(cfg).name
|
65 |
+
with open(cfg) as f:
|
66 |
+
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
67 |
+
|
68 |
+
# Define model
|
69 |
+
if nc and nc != self.yaml['nc']:
|
70 |
+
print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
|
71 |
+
self.yaml['nc'] = nc # override yaml value
|
72 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out
|
73 |
+
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
74 |
+
|
75 |
+
# Build strides, anchors
|
76 |
+
m = self.model[-1] # Detect()
|
77 |
+
if isinstance(m, Detect):
|
78 |
+
s = 128 # 2x min stride
|
79 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
80 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
81 |
+
check_anchor_order(m)
|
82 |
+
self.stride = m.stride
|
83 |
+
self._initialize_biases() # only run once
|
84 |
+
# print('Strides: %s' % m.stride.tolist())
|
85 |
+
|
86 |
+
# Init weights, biases
|
87 |
+
initialize_weights(self)
|
88 |
+
self.info()
|
89 |
+
print('')
|
90 |
+
|
91 |
+
def forward(self, x, augment=False, profile=False):
|
92 |
+
if augment:
|
93 |
+
img_size = x.shape[-2:] # height, width
|
94 |
+
s = [1, 0.83, 0.67] # scales
|
95 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
96 |
+
y = [] # outputs
|
97 |
+
for si, fi in zip(s, f):
|
98 |
+
xi = scale_img(x.flip(fi) if fi else x, si)
|
99 |
+
yi = self.forward_once(xi)[0] # forward
|
100 |
+
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
101 |
+
yi[..., :4] /= si # de-scale
|
102 |
+
if fi == 2:
|
103 |
+
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
104 |
+
elif fi == 3:
|
105 |
+
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
106 |
+
y.append(yi)
|
107 |
+
return torch.cat(y, 1), None # augmented inference, train
|
108 |
+
else:
|
109 |
+
return self.forward_once(x, profile) # single-scale inference, train
|
110 |
+
|
111 |
+
def forward_once(self, x, profile=False):
|
112 |
+
y, dt = [], [] # outputs
|
113 |
+
for m in self.model:
|
114 |
+
if m.f != -1: # if not from previous layer
|
115 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
116 |
+
|
117 |
+
if profile:
|
118 |
+
try:
|
119 |
+
import thop
|
120 |
+
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
|
121 |
+
except:
|
122 |
+
o = 0
|
123 |
+
t = time_synchronized()
|
124 |
+
for _ in range(10):
|
125 |
+
_ = m(x)
|
126 |
+
dt.append((time_synchronized() - t) * 100)
|
127 |
+
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
128 |
+
|
129 |
+
x = m(x) # run
|
130 |
+
y.append(x if m.i in self.save else None) # save output
|
131 |
+
|
132 |
+
if profile:
|
133 |
+
print('%.1fms total' % sum(dt))
|
134 |
+
return x
|
135 |
+
|
136 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
137 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
138 |
+
m = self.model[-1] # Detect() module
|
139 |
+
for mi, s in zip(m.m, m.stride): # from
|
140 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
141 |
+
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
142 |
+
b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
143 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
144 |
+
|
145 |
+
def _print_biases(self):
|
146 |
+
m = self.model[-1] # Detect() module
|
147 |
+
for mi in m.m: # from
|
148 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
149 |
+
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
150 |
+
|
151 |
+
# def _print_weights(self):
|
152 |
+
# for m in self.model.modules():
|
153 |
+
# if type(m) is Bottleneck:
|
154 |
+
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
155 |
+
|
156 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
157 |
+
print('Fusing layers... ', end='')
|
158 |
+
for m in self.model.modules():
|
159 |
+
if type(m) is Conv:
|
160 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
|
161 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
162 |
+
m.bn = None # remove batchnorm
|
163 |
+
m.forward = m.fuseforward # update forward
|
164 |
+
self.info()
|
165 |
+
return self
|
166 |
+
|
167 |
+
def info(self): # print model information
|
168 |
+
model_info(self)
|
169 |
+
|
170 |
+
|
171 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
172 |
+
print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
173 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
174 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
175 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
176 |
+
|
177 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
178 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
179 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
180 |
+
for j, a in enumerate(args):
|
181 |
+
try:
|
182 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
183 |
+
except:
|
184 |
+
pass
|
185 |
+
|
186 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
187 |
+
if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
|
188 |
+
c1, c2 = ch[f], args[0]
|
189 |
+
|
190 |
+
# Normal
|
191 |
+
# if i > 0 and args[0] != no: # channel expansion factor
|
192 |
+
# ex = 1.75 # exponential (default 2.0)
|
193 |
+
# e = math.log(c2 / ch[1]) / math.log(2)
|
194 |
+
# c2 = int(ch[1] * ex ** e)
|
195 |
+
# if m != Focus:
|
196 |
+
|
197 |
+
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
198 |
+
|
199 |
+
# Experimental
|
200 |
+
# if i > 0 and args[0] != no: # channel expansion factor
|
201 |
+
# ex = 1 + gw # exponential (default 2.0)
|
202 |
+
# ch1 = 32 # ch[1]
|
203 |
+
# e = math.log(c2 / ch1) / math.log(2) # level 1-n
|
204 |
+
# c2 = int(ch1 * ex ** e)
|
205 |
+
# if m != Focus:
|
206 |
+
# c2 = make_divisible(c2, 8) if c2 != no else c2
|
207 |
+
|
208 |
+
args = [c1, c2, *args[1:]]
|
209 |
+
if m in [BottleneckCSP, C3]:
|
210 |
+
args.insert(2, n)
|
211 |
+
n = 1
|
212 |
+
elif m is nn.BatchNorm2d:
|
213 |
+
args = [ch[f]]
|
214 |
+
elif m is Concat:
|
215 |
+
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
|
216 |
+
elif m is Detect:
|
217 |
+
args.append([ch[x + 1] for x in f])
|
218 |
+
if isinstance(args[1], int): # number of anchors
|
219 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
220 |
+
else:
|
221 |
+
c2 = ch[f]
|
222 |
+
|
223 |
+
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
224 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
225 |
+
np = sum([x.numel() for x in m_.parameters()]) # number params
|
226 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
227 |
+
print('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
228 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
229 |
+
layers.append(m_)
|
230 |
+
ch.append(c2)
|
231 |
+
return nn.Sequential(*layers), sorted(save)
|
232 |
+
|
233 |
+
|
234 |
+
if __name__ == '__main__':
|
235 |
+
parser = argparse.ArgumentParser()
|
236 |
+
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
237 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
238 |
+
opt = parser.parse_args()
|
239 |
+
opt.cfg = check_file(opt.cfg) # check file
|
240 |
+
device = select_device(opt.device)
|
241 |
+
|
242 |
+
# Create model
|
243 |
+
model = Model(opt.cfg).to(device)
|
244 |
+
model.train()
|
245 |
+
|
246 |
+
# Profile
|
247 |
+
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
248 |
+
# y = model(img, profile=True)
|
249 |
+
|
250 |
+
# ONNX export
|
251 |
+
# model.model[-1].export = True
|
252 |
+
# torch.onnx.export(model, img, opt.cfg.replace('.yaml', '.onnx'), verbose=True, opset_version=11)
|
253 |
+
|
254 |
+
# Tensorboard
|
255 |
+
# from torch.utils.tensorboard import SummaryWriter
|
256 |
+
# tb_writer = SummaryWriter()
|
257 |
+
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
|
258 |
+
# tb_writer.add_graph(model.model, img) # add model to tensorboard
|
259 |
+
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|
models/yolov5l.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5m.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 0.67 # model depth multiple
|
4 |
+
width_multiple: 0.75 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5s.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 0.33 # model depth multiple
|
4 |
+
width_multiple: 0.50 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
models/yolov5x.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 1 # number of classes
|
3 |
+
depth_multiple: 1.33 # model depth multiple
|
4 |
+
width_multiple: 1.25 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv5 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
16 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
+
[-1, 3, BottleneckCSP, [128]],
|
18 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
+
[-1, 9, BottleneckCSP, [256]],
|
20 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
+
[-1, 9, BottleneckCSP, [512]],
|
22 |
+
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
+
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
24 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
25 |
+
]
|
26 |
+
|
27 |
+
# YOLOv5 head
|
28 |
+
head:
|
29 |
+
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
+
[-1, 3, BottleneckCSP, [512, False]], # 13
|
33 |
+
|
34 |
+
[-1, 1, Conv, [256, 1, 1]],
|
35 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
+
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
38 |
+
|
39 |
+
[-1, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
+
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
42 |
+
|
43 |
+
[-1, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
+
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
46 |
+
|
47 |
+
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib>=3.2.2
|
2 |
+
numpy>=1.18.5
|
3 |
+
opencv-python>=4.1.2
|
4 |
+
opencv-python-headless==4.9.0.80
|
5 |
+
pillow
|
6 |
+
PyYAML>=5.3
|
7 |
+
scipy>=1.4.1
|
8 |
+
torch>=1.6.0
|
9 |
+
torchvision>=0.7.0
|
10 |
+
tqdm>=4.41.0
|
utils/__init__.py
ADDED
File without changes
|
utils/activations.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
# Swish https://arxiv.org/pdf/1905.02244.pdf ---------------------------------------------------------------------------
|
7 |
+
class Swish(nn.Module): #
|
8 |
+
@staticmethod
|
9 |
+
def forward(x):
|
10 |
+
return x * torch.sigmoid(x)
|
11 |
+
|
12 |
+
|
13 |
+
class HardSwish(nn.Module):
|
14 |
+
@staticmethod
|
15 |
+
def forward(x):
|
16 |
+
return x * F.hardtanh(x + 3, 0., 6., True) / 6.
|
17 |
+
|
18 |
+
|
19 |
+
class MemoryEfficientSwish(nn.Module):
|
20 |
+
class F(torch.autograd.Function):
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, x):
|
23 |
+
ctx.save_for_backward(x)
|
24 |
+
return x * torch.sigmoid(x)
|
25 |
+
|
26 |
+
@staticmethod
|
27 |
+
def backward(ctx, grad_output):
|
28 |
+
x = ctx.saved_tensors[0]
|
29 |
+
sx = torch.sigmoid(x)
|
30 |
+
return grad_output * (sx * (1 + x * (1 - sx)))
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.F.apply(x)
|
34 |
+
|
35 |
+
|
36 |
+
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
37 |
+
class Mish(nn.Module):
|
38 |
+
@staticmethod
|
39 |
+
def forward(x):
|
40 |
+
return x * F.softplus(x).tanh()
|
41 |
+
|
42 |
+
|
43 |
+
class MemoryEfficientMish(nn.Module):
|
44 |
+
class F(torch.autograd.Function):
|
45 |
+
@staticmethod
|
46 |
+
def forward(ctx, x):
|
47 |
+
ctx.save_for_backward(x)
|
48 |
+
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def backward(ctx, grad_output):
|
52 |
+
x = ctx.saved_tensors[0]
|
53 |
+
sx = torch.sigmoid(x)
|
54 |
+
fx = F.softplus(x).tanh()
|
55 |
+
return grad_output * (fx + x * sx * (1 - fx * fx))
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return self.F.apply(x)
|
59 |
+
|
60 |
+
|
61 |
+
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
62 |
+
class FReLU(nn.Module):
|
63 |
+
def __init__(self, c1, k=3): # ch_in, kernel
|
64 |
+
super().__init__()
|
65 |
+
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
|
66 |
+
self.bn = nn.BatchNorm2d(c1)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
return torch.max(x, self.bn(self.conv(x)))
|
utils/datasets.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import shutil
|
6 |
+
import time
|
7 |
+
from pathlib import Path
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from PIL import Image, ExifTags
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
from utils.general import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
|
18 |
+
|
19 |
+
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
20 |
+
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
|
21 |
+
vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
|
22 |
+
|
23 |
+
# Get orientation exif tag
|
24 |
+
for orientation in ExifTags.TAGS.keys():
|
25 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
26 |
+
break
|
27 |
+
|
28 |
+
|
29 |
+
def get_hash(files):
|
30 |
+
# Returns a single hash value of a list of files
|
31 |
+
return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
32 |
+
|
33 |
+
|
34 |
+
def exif_size(img):
|
35 |
+
# Returns exif-corrected PIL size
|
36 |
+
s = img.size # (width, height)
|
37 |
+
try:
|
38 |
+
rotation = dict(img._getexif().items())[orientation]
|
39 |
+
if rotation == 6: # rotation 270
|
40 |
+
s = (s[1], s[0])
|
41 |
+
elif rotation == 8: # rotation 90
|
42 |
+
s = (s[1], s[0])
|
43 |
+
except:
|
44 |
+
pass
|
45 |
+
|
46 |
+
return s
|
47 |
+
|
48 |
+
|
49 |
+
def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
50 |
+
local_rank=-1, world_size=1):
|
51 |
+
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
|
52 |
+
with torch_distributed_zero_first(local_rank):
|
53 |
+
dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
54 |
+
augment=augment, # augment images
|
55 |
+
hyp=hyp, # augmentation hyperparameters
|
56 |
+
rect=rect, # rectangular training
|
57 |
+
cache_images=cache,
|
58 |
+
single_cls=opt.single_cls,
|
59 |
+
stride=int(stride),
|
60 |
+
pad=pad)
|
61 |
+
|
62 |
+
batch_size = min(batch_size, len(dataset))
|
63 |
+
nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, 8]) # number of workers
|
64 |
+
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if local_rank != -1 else None
|
65 |
+
dataloader = torch.utils.data.DataLoader(dataset,
|
66 |
+
batch_size=batch_size,
|
67 |
+
num_workers=nw,
|
68 |
+
sampler=train_sampler,
|
69 |
+
pin_memory=True,
|
70 |
+
collate_fn=LoadImagesAndLabels.collate_fn)
|
71 |
+
return dataloader, dataset
|
72 |
+
|
73 |
+
|
74 |
+
class LoadImages: # for inference
|
75 |
+
def __init__(self, path, img_size=640):
|
76 |
+
p = str(Path(path)) # os-agnostic
|
77 |
+
p = os.path.abspath(p) # absolute path
|
78 |
+
if '*' in p:
|
79 |
+
files = sorted(glob.glob(p)) # glob
|
80 |
+
elif os.path.isdir(p):
|
81 |
+
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
82 |
+
elif os.path.isfile(p):
|
83 |
+
files = [p] # files
|
84 |
+
else:
|
85 |
+
raise Exception('ERROR: %s does not exist' % p)
|
86 |
+
|
87 |
+
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
|
88 |
+
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
|
89 |
+
ni, nv = len(images), len(videos)
|
90 |
+
|
91 |
+
self.img_size = img_size
|
92 |
+
self.files = images + videos
|
93 |
+
self.nf = ni + nv # number of files
|
94 |
+
self.video_flag = [False] * ni + [True] * nv
|
95 |
+
self.mode = 'images'
|
96 |
+
if any(videos):
|
97 |
+
self.new_video(videos[0]) # new video
|
98 |
+
else:
|
99 |
+
self.cap = None
|
100 |
+
assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
|
101 |
+
(p, img_formats, vid_formats)
|
102 |
+
|
103 |
+
def __iter__(self):
|
104 |
+
self.count = 0
|
105 |
+
return self
|
106 |
+
|
107 |
+
def __next__(self):
|
108 |
+
if self.count == self.nf:
|
109 |
+
raise StopIteration
|
110 |
+
path = self.files[self.count]
|
111 |
+
|
112 |
+
if self.video_flag[self.count]:
|
113 |
+
# Read video
|
114 |
+
self.mode = 'video'
|
115 |
+
ret_val, img0 = self.cap.read()
|
116 |
+
if not ret_val:
|
117 |
+
self.count += 1
|
118 |
+
self.cap.release()
|
119 |
+
if self.count == self.nf: # last video
|
120 |
+
raise StopIteration
|
121 |
+
else:
|
122 |
+
path = self.files[self.count]
|
123 |
+
self.new_video(path)
|
124 |
+
ret_val, img0 = self.cap.read()
|
125 |
+
|
126 |
+
self.frame += 1
|
127 |
+
print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
|
128 |
+
|
129 |
+
else:
|
130 |
+
# Read image
|
131 |
+
self.count += 1
|
132 |
+
img0 = cv2.imread(path) # BGR
|
133 |
+
assert img0 is not None, 'Image Not Found ' + path
|
134 |
+
print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
|
135 |
+
|
136 |
+
# Padded resize
|
137 |
+
img = letterbox(img0, new_shape=self.img_size)[0]
|
138 |
+
|
139 |
+
# Convert
|
140 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
141 |
+
img = np.ascontiguousarray(img)
|
142 |
+
|
143 |
+
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
|
144 |
+
return path, img, img0, self.cap
|
145 |
+
|
146 |
+
def new_video(self, path):
|
147 |
+
self.frame = 0
|
148 |
+
self.cap = cv2.VideoCapture(path)
|
149 |
+
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
150 |
+
|
151 |
+
def __len__(self):
|
152 |
+
return self.nf # number of files
|
153 |
+
|
154 |
+
|
155 |
+
class LoadWebcam: # for inference
|
156 |
+
def __init__(self, pipe=0, img_size=640):
|
157 |
+
self.img_size = img_size
|
158 |
+
|
159 |
+
if pipe == '0':
|
160 |
+
pipe = 0 # local camera
|
161 |
+
# pipe = 'rtsp://192.168.1.64/1' # IP camera
|
162 |
+
# pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
|
163 |
+
# pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
|
164 |
+
# pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
|
165 |
+
|
166 |
+
# https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
|
167 |
+
# pipe = '"rtspsrc location="rtsp://username:password@192.168.1.64/1" latency=10 ! appsink' # GStreamer
|
168 |
+
|
169 |
+
# https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
|
170 |
+
# https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
|
171 |
+
# pipe = "rtspsrc location=rtsp://root:root@192.168.0.91:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
|
172 |
+
|
173 |
+
self.pipe = pipe
|
174 |
+
self.cap = cv2.VideoCapture(pipe) # video capture object
|
175 |
+
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
176 |
+
|
177 |
+
def __iter__(self):
|
178 |
+
self.count = -1
|
179 |
+
return self
|
180 |
+
|
181 |
+
def __next__(self):
|
182 |
+
self.count += 1
|
183 |
+
if cv2.waitKey(1) == ord('q'): # q to quit
|
184 |
+
self.cap.release()
|
185 |
+
cv2.destroyAllWindows()
|
186 |
+
raise StopIteration
|
187 |
+
|
188 |
+
# Read frame
|
189 |
+
if self.pipe == 0: # local camera
|
190 |
+
ret_val, img0 = self.cap.read()
|
191 |
+
img0 = cv2.flip(img0, 1) # flip left-right
|
192 |
+
else: # IP camera
|
193 |
+
n = 0
|
194 |
+
while True:
|
195 |
+
n += 1
|
196 |
+
self.cap.grab()
|
197 |
+
if n % 30 == 0: # skip frames
|
198 |
+
ret_val, img0 = self.cap.retrieve()
|
199 |
+
if ret_val:
|
200 |
+
break
|
201 |
+
|
202 |
+
# Print
|
203 |
+
assert ret_val, 'Camera Error %s' % self.pipe
|
204 |
+
img_path = 'webcam.jpg'
|
205 |
+
print('webcam %g: ' % self.count, end='')
|
206 |
+
|
207 |
+
# Padded resize
|
208 |
+
img = letterbox(img0, new_shape=self.img_size)[0]
|
209 |
+
|
210 |
+
# Convert
|
211 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
212 |
+
img = np.ascontiguousarray(img)
|
213 |
+
|
214 |
+
return img_path, img, img0, None
|
215 |
+
|
216 |
+
def __len__(self):
|
217 |
+
return 0
|
218 |
+
|
219 |
+
|
220 |
+
class LoadStreams: # multiple IP or RTSP cameras
|
221 |
+
def __init__(self, sources='streams.txt', img_size=640):
|
222 |
+
self.mode = 'images'
|
223 |
+
self.img_size = img_size
|
224 |
+
|
225 |
+
if os.path.isfile(sources):
|
226 |
+
with open(sources, 'r') as f:
|
227 |
+
sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
|
228 |
+
else:
|
229 |
+
sources = [sources]
|
230 |
+
|
231 |
+
n = len(sources)
|
232 |
+
self.imgs = [None] * n
|
233 |
+
self.sources = sources
|
234 |
+
for i, s in enumerate(sources):
|
235 |
+
# Start the thread to read frames from the video stream
|
236 |
+
print('%g/%g: %s... ' % (i + 1, n, s), end='')
|
237 |
+
cap = cv2.VideoCapture(0 if s == '0' else s)
|
238 |
+
assert cap.isOpened(), 'Failed to open %s' % s
|
239 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
240 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
241 |
+
fps = cap.get(cv2.CAP_PROP_FPS) % 100
|
242 |
+
_, self.imgs[i] = cap.read() # guarantee first frame
|
243 |
+
thread = Thread(target=self.update, args=([i, cap]), daemon=True)
|
244 |
+
print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
|
245 |
+
thread.start()
|
246 |
+
print('') # newline
|
247 |
+
|
248 |
+
# check for common shapes
|
249 |
+
s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
|
250 |
+
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
251 |
+
if not self.rect:
|
252 |
+
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
253 |
+
|
254 |
+
def update(self, index, cap):
|
255 |
+
# Read next stream frame in a daemon thread
|
256 |
+
n = 0
|
257 |
+
while cap.isOpened():
|
258 |
+
n += 1
|
259 |
+
# _, self.imgs[index] = cap.read()
|
260 |
+
cap.grab()
|
261 |
+
if n == 4: # read every 4th frame
|
262 |
+
_, self.imgs[index] = cap.retrieve()
|
263 |
+
n = 0
|
264 |
+
time.sleep(0.01) # wait time
|
265 |
+
|
266 |
+
def __iter__(self):
|
267 |
+
self.count = -1
|
268 |
+
return self
|
269 |
+
|
270 |
+
def __next__(self):
|
271 |
+
self.count += 1
|
272 |
+
img0 = self.imgs.copy()
|
273 |
+
if cv2.waitKey(1) == ord('q'): # q to quit
|
274 |
+
cv2.destroyAllWindows()
|
275 |
+
raise StopIteration
|
276 |
+
|
277 |
+
# Letterbox
|
278 |
+
img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
|
279 |
+
|
280 |
+
# Stack
|
281 |
+
img = np.stack(img, 0)
|
282 |
+
|
283 |
+
# Convert
|
284 |
+
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
|
285 |
+
img = np.ascontiguousarray(img)
|
286 |
+
|
287 |
+
return self.sources, img, img0, None
|
288 |
+
|
289 |
+
def __len__(self):
|
290 |
+
return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
|
291 |
+
|
292 |
+
|
293 |
+
class LoadImagesAndLabels(Dataset): # for training/testing
|
294 |
+
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
295 |
+
cache_images=False, single_cls=False, stride=32, pad=0.0):
|
296 |
+
try:
|
297 |
+
f = [] # image files
|
298 |
+
for p in path if isinstance(path, list) else [path]:
|
299 |
+
p = str(Path(p)) # os-agnostic
|
300 |
+
parent = str(Path(p).parent) + os.sep
|
301 |
+
if os.path.isfile(p): # file
|
302 |
+
with open(p, 'r') as t:
|
303 |
+
t = t.read().splitlines()
|
304 |
+
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
305 |
+
elif os.path.isdir(p): # folder
|
306 |
+
f += glob.iglob(p + os.sep + '*.*')
|
307 |
+
else:
|
308 |
+
raise Exception('%s does not exist' % p)
|
309 |
+
self.img_files = sorted(
|
310 |
+
[x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats])
|
311 |
+
except Exception as e:
|
312 |
+
raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
|
313 |
+
|
314 |
+
n = len(self.img_files)
|
315 |
+
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
|
316 |
+
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
317 |
+
nb = bi[-1] + 1 # number of batches
|
318 |
+
|
319 |
+
self.n = n # number of images
|
320 |
+
self.batch = bi # batch index of image
|
321 |
+
self.img_size = img_size
|
322 |
+
self.augment = augment
|
323 |
+
self.hyp = hyp
|
324 |
+
self.image_weights = image_weights
|
325 |
+
self.rect = False if image_weights else rect
|
326 |
+
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
327 |
+
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
328 |
+
self.stride = stride
|
329 |
+
|
330 |
+
# Define labels
|
331 |
+
self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
|
332 |
+
self.img_files]
|
333 |
+
|
334 |
+
# Check cache
|
335 |
+
cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
|
336 |
+
if os.path.isfile(cache_path):
|
337 |
+
cache = torch.load(cache_path) # load
|
338 |
+
if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
|
339 |
+
cache = self.cache_labels(cache_path) # re-cache
|
340 |
+
else:
|
341 |
+
cache = self.cache_labels(cache_path) # cache
|
342 |
+
|
343 |
+
# Get labels
|
344 |
+
labels, shapes = zip(*[cache[x] for x in self.img_files])
|
345 |
+
self.shapes = np.array(shapes, dtype=np.float64)
|
346 |
+
self.labels = list(labels)
|
347 |
+
|
348 |
+
# Rectangular Training https://github.com/ultralytics/yolov3/issues/232
|
349 |
+
if self.rect:
|
350 |
+
# Sort by aspect ratio
|
351 |
+
s = self.shapes # wh
|
352 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
353 |
+
irect = ar.argsort()
|
354 |
+
self.img_files = [self.img_files[i] for i in irect]
|
355 |
+
self.label_files = [self.label_files[i] for i in irect]
|
356 |
+
self.labels = [self.labels[i] for i in irect]
|
357 |
+
self.shapes = s[irect] # wh
|
358 |
+
ar = ar[irect]
|
359 |
+
|
360 |
+
# Set training image shapes
|
361 |
+
shapes = [[1, 1]] * nb
|
362 |
+
for i in range(nb):
|
363 |
+
ari = ar[bi == i]
|
364 |
+
mini, maxi = ari.min(), ari.max()
|
365 |
+
if maxi < 1:
|
366 |
+
shapes[i] = [maxi, 1]
|
367 |
+
elif mini > 1:
|
368 |
+
shapes[i] = [1, 1 / mini]
|
369 |
+
|
370 |
+
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
371 |
+
|
372 |
+
# Cache labels
|
373 |
+
create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
|
374 |
+
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
|
375 |
+
pbar = tqdm(self.label_files)
|
376 |
+
for i, file in enumerate(pbar):
|
377 |
+
l = self.labels[i] # label
|
378 |
+
if l.shape[0]:
|
379 |
+
assert l.shape[1] == 5, '> 5 label columns: %s' % file
|
380 |
+
assert (l >= 0).all(), 'negative labels: %s' % file
|
381 |
+
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
|
382 |
+
if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
|
383 |
+
nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
|
384 |
+
if single_cls:
|
385 |
+
l[:, 0] = 0 # force dataset into single-class mode
|
386 |
+
self.labels[i] = l
|
387 |
+
nf += 1 # file found
|
388 |
+
|
389 |
+
# Create subdataset (a smaller dataset)
|
390 |
+
if create_datasubset and ns < 1E4:
|
391 |
+
if ns == 0:
|
392 |
+
create_folder(path='./datasubset')
|
393 |
+
os.makedirs('./datasubset/images')
|
394 |
+
exclude_classes = 43
|
395 |
+
if exclude_classes not in l[:, 0]:
|
396 |
+
ns += 1
|
397 |
+
# shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
|
398 |
+
with open('./datasubset/images.txt', 'a') as f:
|
399 |
+
f.write(self.img_files[i] + '\n')
|
400 |
+
|
401 |
+
# Extract object detection boxes for a second stage classifier
|
402 |
+
if extract_bounding_boxes:
|
403 |
+
p = Path(self.img_files[i])
|
404 |
+
img = cv2.imread(str(p))
|
405 |
+
h, w = img.shape[:2]
|
406 |
+
for j, x in enumerate(l):
|
407 |
+
f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
|
408 |
+
if not os.path.exists(Path(f).parent):
|
409 |
+
os.makedirs(Path(f).parent) # make new output folder
|
410 |
+
|
411 |
+
b = x[1:] * [w, h, w, h] # box
|
412 |
+
b[2:] = b[2:].max() # rectangle to square
|
413 |
+
b[2:] = b[2:] * 1.3 + 30 # pad
|
414 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
415 |
+
|
416 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
417 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
418 |
+
assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
|
419 |
+
else:
|
420 |
+
ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
|
421 |
+
# os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
|
422 |
+
|
423 |
+
pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
|
424 |
+
cache_path, nf, nm, ne, nd, n)
|
425 |
+
if nf == 0:
|
426 |
+
s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
|
427 |
+
print(s)
|
428 |
+
assert not augment, '%s. Can not train without labels.' % s
|
429 |
+
|
430 |
+
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
431 |
+
self.imgs = [None] * n
|
432 |
+
if cache_images:
|
433 |
+
gb = 0 # Gigabytes of cached images
|
434 |
+
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
|
435 |
+
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
436 |
+
for i in pbar: # max 10k images
|
437 |
+
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
|
438 |
+
gb += self.imgs[i].nbytes
|
439 |
+
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
|
440 |
+
|
441 |
+
def cache_labels(self, path='labels.cache'):
|
442 |
+
# Cache dataset labels, check images and read shapes
|
443 |
+
x = {} # dict
|
444 |
+
pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
445 |
+
for (img, label) in pbar:
|
446 |
+
try:
|
447 |
+
l = []
|
448 |
+
image = Image.open(img)
|
449 |
+
image.verify() # PIL verify
|
450 |
+
# _ = io.imread(img) # skimage verify (from skimage import io)
|
451 |
+
shape = exif_size(image) # image size
|
452 |
+
assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
|
453 |
+
if os.path.isfile(label):
|
454 |
+
with open(label, 'r') as f:
|
455 |
+
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
|
456 |
+
if len(l) == 0:
|
457 |
+
l = np.zeros((0, 5), dtype=np.float32)
|
458 |
+
x[img] = [l, shape]
|
459 |
+
except Exception as e:
|
460 |
+
x[img] = [None, None]
|
461 |
+
print('WARNING: %s: %s' % (img, e))
|
462 |
+
|
463 |
+
x['hash'] = get_hash(self.label_files + self.img_files)
|
464 |
+
torch.save(x, path) # save for next time
|
465 |
+
return x
|
466 |
+
|
467 |
+
def __len__(self):
|
468 |
+
return len(self.img_files)
|
469 |
+
|
470 |
+
# def __iter__(self):
|
471 |
+
# self.count = -1
|
472 |
+
# print('ran dataset iter')
|
473 |
+
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
474 |
+
# return self
|
475 |
+
|
476 |
+
def __getitem__(self, index):
|
477 |
+
if self.image_weights:
|
478 |
+
index = self.indices[index]
|
479 |
+
|
480 |
+
hyp = self.hyp
|
481 |
+
if self.mosaic:
|
482 |
+
# Load mosaic
|
483 |
+
img, labels = load_mosaic(self, index)
|
484 |
+
shapes = None
|
485 |
+
|
486 |
+
# MixUp https://arxiv.org/pdf/1710.09412.pdf
|
487 |
+
if random.random() < hyp['mixup']:
|
488 |
+
img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
|
489 |
+
r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
|
490 |
+
img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
491 |
+
labels = np.concatenate((labels, labels2), 0)
|
492 |
+
|
493 |
+
else:
|
494 |
+
# Load image
|
495 |
+
img, (h0, w0), (h, w) = load_image(self, index)
|
496 |
+
|
497 |
+
# Letterbox
|
498 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
499 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
500 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
501 |
+
|
502 |
+
# Load labels
|
503 |
+
labels = []
|
504 |
+
x = self.labels[index]
|
505 |
+
if x.size > 0:
|
506 |
+
# Normalized xywh to pixel xyxy format
|
507 |
+
labels = x.copy()
|
508 |
+
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
|
509 |
+
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
|
510 |
+
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
|
511 |
+
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
|
512 |
+
|
513 |
+
if self.augment:
|
514 |
+
# Augment imagespace
|
515 |
+
if not self.mosaic:
|
516 |
+
img, labels = random_perspective(img, labels,
|
517 |
+
degrees=hyp['degrees'],
|
518 |
+
translate=hyp['translate'],
|
519 |
+
scale=hyp['scale'],
|
520 |
+
shear=hyp['shear'],
|
521 |
+
perspective=hyp['perspective'])
|
522 |
+
|
523 |
+
# Augment colorspace
|
524 |
+
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
525 |
+
|
526 |
+
# Apply cutouts
|
527 |
+
# if random.random() < 0.9:
|
528 |
+
# labels = cutout(img, labels)
|
529 |
+
|
530 |
+
nL = len(labels) # number of labels
|
531 |
+
if nL:
|
532 |
+
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
|
533 |
+
labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
|
534 |
+
labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
|
535 |
+
|
536 |
+
if self.augment:
|
537 |
+
# flip up-down
|
538 |
+
if random.random() < hyp['flipud']:
|
539 |
+
img = np.flipud(img)
|
540 |
+
if nL:
|
541 |
+
labels[:, 2] = 1 - labels[:, 2]
|
542 |
+
|
543 |
+
# flip left-right
|
544 |
+
if random.random() < hyp['fliplr']:
|
545 |
+
img = np.fliplr(img)
|
546 |
+
if nL:
|
547 |
+
labels[:, 1] = 1 - labels[:, 1]
|
548 |
+
|
549 |
+
labels_out = torch.zeros((nL, 6))
|
550 |
+
if nL:
|
551 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
552 |
+
|
553 |
+
# Convert
|
554 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
555 |
+
img = np.ascontiguousarray(img)
|
556 |
+
|
557 |
+
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
558 |
+
|
559 |
+
@staticmethod
|
560 |
+
def collate_fn(batch):
|
561 |
+
img, label, path, shapes = zip(*batch) # transposed
|
562 |
+
for i, l in enumerate(label):
|
563 |
+
l[:, 0] = i # add target image index for build_targets()
|
564 |
+
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
565 |
+
|
566 |
+
|
567 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
568 |
+
def load_image(self, index):
|
569 |
+
# loads 1 image from dataset, returns img, original hw, resized hw
|
570 |
+
img = self.imgs[index]
|
571 |
+
if img is None: # not cached
|
572 |
+
path = self.img_files[index]
|
573 |
+
img = cv2.imread(path) # BGR
|
574 |
+
assert img is not None, 'Image Not Found ' + path
|
575 |
+
h0, w0 = img.shape[:2] # orig hw
|
576 |
+
r = self.img_size / max(h0, w0) # resize image to img_size
|
577 |
+
if r != 1: # always resize down, only resize up if training with augmentation
|
578 |
+
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
|
579 |
+
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
580 |
+
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
|
581 |
+
else:
|
582 |
+
return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
|
583 |
+
|
584 |
+
|
585 |
+
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
586 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
587 |
+
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
588 |
+
dtype = img.dtype # uint8
|
589 |
+
|
590 |
+
x = np.arange(0, 256, dtype=np.int16)
|
591 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
592 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
593 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
594 |
+
|
595 |
+
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
596 |
+
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
597 |
+
|
598 |
+
# Histogram equalization
|
599 |
+
# if random.random() < 0.2:
|
600 |
+
# for i in range(3):
|
601 |
+
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
|
602 |
+
|
603 |
+
|
604 |
+
def load_mosaic(self, index):
|
605 |
+
# loads images in a mosaic
|
606 |
+
|
607 |
+
labels4 = []
|
608 |
+
s = self.img_size
|
609 |
+
yc, xc = s, s # mosaic center x, y
|
610 |
+
indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
|
611 |
+
for i, index in enumerate(indices):
|
612 |
+
# Load image
|
613 |
+
img, _, (h, w) = load_image(self, index)
|
614 |
+
|
615 |
+
# place img in img4
|
616 |
+
if i == 0: # top left
|
617 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
618 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
619 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
620 |
+
elif i == 1: # top right
|
621 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
622 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
623 |
+
elif i == 2: # bottom left
|
624 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
625 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
|
626 |
+
elif i == 3: # bottom right
|
627 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
628 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
629 |
+
|
630 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
631 |
+
padw = x1a - x1b
|
632 |
+
padh = y1a - y1b
|
633 |
+
|
634 |
+
# Labels
|
635 |
+
x = self.labels[index]
|
636 |
+
labels = x.copy()
|
637 |
+
if x.size > 0: # Normalized xywh to pixel xyxy format
|
638 |
+
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
|
639 |
+
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
|
640 |
+
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
|
641 |
+
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
|
642 |
+
labels4.append(labels)
|
643 |
+
|
644 |
+
# Concat/clip labels
|
645 |
+
if len(labels4):
|
646 |
+
labels4 = np.concatenate(labels4, 0)
|
647 |
+
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
|
648 |
+
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
|
649 |
+
|
650 |
+
# Replicate
|
651 |
+
# img4, labels4 = replicate(img4, labels4)
|
652 |
+
|
653 |
+
# Augment
|
654 |
+
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
|
655 |
+
img4, labels4 = random_perspective(img4, labels4,
|
656 |
+
degrees=self.hyp['degrees'],
|
657 |
+
translate=self.hyp['translate'],
|
658 |
+
scale=self.hyp['scale'],
|
659 |
+
shear=self.hyp['shear'],
|
660 |
+
perspective=self.hyp['perspective'],
|
661 |
+
border=self.mosaic_border) # border to remove
|
662 |
+
|
663 |
+
return img4, labels4
|
664 |
+
|
665 |
+
|
666 |
+
def replicate(img, labels):
|
667 |
+
# Replicate labels
|
668 |
+
h, w = img.shape[:2]
|
669 |
+
boxes = labels[:, 1:].astype(int)
|
670 |
+
x1, y1, x2, y2 = boxes.T
|
671 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
672 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
673 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
674 |
+
bh, bw = y2b - y1b, x2b - x1b
|
675 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
676 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
677 |
+
img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
678 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
679 |
+
|
680 |
+
return img, labels
|
681 |
+
|
682 |
+
|
683 |
+
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
|
684 |
+
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
|
685 |
+
shape = img.shape[:2] # current shape [height, width]
|
686 |
+
if isinstance(new_shape, int):
|
687 |
+
new_shape = (new_shape, new_shape)
|
688 |
+
|
689 |
+
# Scale ratio (new / old)
|
690 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
691 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
692 |
+
r = min(r, 1.0)
|
693 |
+
|
694 |
+
# Compute padding
|
695 |
+
ratio = r, r # width, height ratios
|
696 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
697 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
698 |
+
if auto: # minimum rectangle
|
699 |
+
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
|
700 |
+
elif scaleFill: # stretch
|
701 |
+
dw, dh = 0.0, 0.0
|
702 |
+
new_unpad = (new_shape[1], new_shape[0])
|
703 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
704 |
+
|
705 |
+
dw /= 2 # divide padding into 2 sides
|
706 |
+
dh /= 2
|
707 |
+
|
708 |
+
if shape[::-1] != new_unpad: # resize
|
709 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
710 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
711 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
712 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
713 |
+
return img, ratio, (dw, dh)
|
714 |
+
|
715 |
+
|
716 |
+
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
|
717 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
718 |
+
# targets = [cls, xyxy]
|
719 |
+
|
720 |
+
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
721 |
+
width = img.shape[1] + border[1] * 2
|
722 |
+
|
723 |
+
# Center
|
724 |
+
C = np.eye(3)
|
725 |
+
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
726 |
+
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
727 |
+
|
728 |
+
# Perspective
|
729 |
+
P = np.eye(3)
|
730 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
731 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
732 |
+
|
733 |
+
# Rotation and Scale
|
734 |
+
R = np.eye(3)
|
735 |
+
a = random.uniform(-degrees, degrees)
|
736 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
737 |
+
s = random.uniform(1 - scale, 1 + scale)
|
738 |
+
# s = 2 ** random.uniform(-scale, scale)
|
739 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
740 |
+
|
741 |
+
# Shear
|
742 |
+
S = np.eye(3)
|
743 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
744 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
745 |
+
|
746 |
+
# Translation
|
747 |
+
T = np.eye(3)
|
748 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
749 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
750 |
+
|
751 |
+
# Combined rotation matrix
|
752 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
753 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
754 |
+
if perspective:
|
755 |
+
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
756 |
+
else: # affine
|
757 |
+
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
758 |
+
|
759 |
+
# Visualize
|
760 |
+
# import matplotlib.pyplot as plt
|
761 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
762 |
+
# ax[0].imshow(img[:, :, ::-1]) # base
|
763 |
+
# ax[1].imshow(img2[:, :, ::-1]) # warped
|
764 |
+
|
765 |
+
# Transform label coordinates
|
766 |
+
n = len(targets)
|
767 |
+
if n:
|
768 |
+
# warp points
|
769 |
+
xy = np.ones((n * 4, 3))
|
770 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
771 |
+
xy = xy @ M.T # transform
|
772 |
+
if perspective:
|
773 |
+
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
774 |
+
else: # affine
|
775 |
+
xy = xy[:, :2].reshape(n, 8)
|
776 |
+
|
777 |
+
# create new boxes
|
778 |
+
x = xy[:, [0, 2, 4, 6]]
|
779 |
+
y = xy[:, [1, 3, 5, 7]]
|
780 |
+
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
781 |
+
|
782 |
+
# # apply angle-based reduction of bounding boxes
|
783 |
+
# radians = a * math.pi / 180
|
784 |
+
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
|
785 |
+
# x = (xy[:, 2] + xy[:, 0]) / 2
|
786 |
+
# y = (xy[:, 3] + xy[:, 1]) / 2
|
787 |
+
# w = (xy[:, 2] - xy[:, 0]) * reduction
|
788 |
+
# h = (xy[:, 3] - xy[:, 1]) * reduction
|
789 |
+
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
|
790 |
+
|
791 |
+
# clip boxes
|
792 |
+
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
793 |
+
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
794 |
+
|
795 |
+
# filter candidates
|
796 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
|
797 |
+
targets = targets[i]
|
798 |
+
targets[:, 1:5] = xy[i]
|
799 |
+
|
800 |
+
return img, targets
|
801 |
+
|
802 |
+
|
803 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2): # box1(4,n), box2(4,n)
|
804 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
805 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
806 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
807 |
+
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
|
808 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
|
809 |
+
|
810 |
+
|
811 |
+
def cutout(image, labels):
|
812 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
813 |
+
h, w = image.shape[:2]
|
814 |
+
|
815 |
+
def bbox_ioa(box1, box2):
|
816 |
+
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
|
817 |
+
box2 = box2.transpose()
|
818 |
+
|
819 |
+
# Get the coordinates of bounding boxes
|
820 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
821 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
822 |
+
|
823 |
+
# Intersection area
|
824 |
+
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
825 |
+
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
826 |
+
|
827 |
+
# box2 area
|
828 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
829 |
+
|
830 |
+
# Intersection over box2 area
|
831 |
+
return inter_area / box2_area
|
832 |
+
|
833 |
+
# create random masks
|
834 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
835 |
+
for s in scales:
|
836 |
+
mask_h = random.randint(1, int(h * s))
|
837 |
+
mask_w = random.randint(1, int(w * s))
|
838 |
+
|
839 |
+
# box
|
840 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
841 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
842 |
+
xmax = min(w, xmin + mask_w)
|
843 |
+
ymax = min(h, ymin + mask_h)
|
844 |
+
|
845 |
+
# apply random color mask
|
846 |
+
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
847 |
+
|
848 |
+
# return unobscured labels
|
849 |
+
if len(labels) and s > 0.03:
|
850 |
+
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
851 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
852 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
853 |
+
|
854 |
+
return labels
|
855 |
+
|
856 |
+
|
857 |
+
def reduce_img_size(path='path/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
|
858 |
+
# creates a new ./images_reduced folder with reduced size images of maximum size img_size
|
859 |
+
path_new = path + '_reduced' # reduced images path
|
860 |
+
create_folder(path_new)
|
861 |
+
for f in tqdm(glob.glob('%s/*.*' % path)):
|
862 |
+
try:
|
863 |
+
img = cv2.imread(f)
|
864 |
+
h, w = img.shape[:2]
|
865 |
+
r = img_size / max(h, w) # size ratio
|
866 |
+
if r < 1.0:
|
867 |
+
img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
|
868 |
+
fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
|
869 |
+
cv2.imwrite(fnew, img)
|
870 |
+
except:
|
871 |
+
print('WARNING: image failure %s' % f)
|
872 |
+
|
873 |
+
|
874 |
+
def recursive_dataset2bmp(dataset='path/dataset_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
|
875 |
+
# Converts dataset to bmp (for faster training)
|
876 |
+
formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
|
877 |
+
for a, b, files in os.walk(dataset):
|
878 |
+
for file in tqdm(files, desc=a):
|
879 |
+
p = a + '/' + file
|
880 |
+
s = Path(file).suffix
|
881 |
+
if s == '.txt': # replace text
|
882 |
+
with open(p, 'r') as f:
|
883 |
+
lines = f.read()
|
884 |
+
for f in formats:
|
885 |
+
lines = lines.replace(f, '.bmp')
|
886 |
+
with open(p, 'w') as f:
|
887 |
+
f.write(lines)
|
888 |
+
elif s in formats: # replace image
|
889 |
+
cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
|
890 |
+
if s != '.bmp':
|
891 |
+
os.system("rm '%s'" % p)
|
892 |
+
|
893 |
+
|
894 |
+
def imagelist2folder(path='path/images.txt'): # from utils.datasets import *; imagelist2folder()
|
895 |
+
# Copies all the images in a text file (list of images) into a folder
|
896 |
+
create_folder(path[:-4])
|
897 |
+
with open(path, 'r') as f:
|
898 |
+
for line in f.read().splitlines():
|
899 |
+
os.system('cp "%s" %s' % (line, path[:-4]))
|
900 |
+
print(line)
|
901 |
+
|
902 |
+
|
903 |
+
def create_folder(path='./new'):
|
904 |
+
# Create folder
|
905 |
+
if os.path.exists(path):
|
906 |
+
shutil.rmtree(path) # delete output folder
|
907 |
+
os.makedirs(path) # make new output folder
|
utils/general.py
ADDED
@@ -0,0 +1,1263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import shutil
|
6 |
+
import subprocess
|
7 |
+
import time
|
8 |
+
from contextlib import contextmanager
|
9 |
+
from copy import copy
|
10 |
+
from pathlib import Path
|
11 |
+
from sys import platform
|
12 |
+
|
13 |
+
import cv2
|
14 |
+
import matplotlib
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torchvision
|
20 |
+
import yaml
|
21 |
+
from scipy.cluster.vq import kmeans
|
22 |
+
from scipy.signal import butter, filtfilt
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
from utils.torch_utils import init_seeds, is_parallel
|
26 |
+
|
27 |
+
# Set printoptions
|
28 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
29 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
30 |
+
matplotlib.rc('font', **{'size': 11})
|
31 |
+
|
32 |
+
# Prevent OpenCV from multithreading (to use PyTorch DataLoader)
|
33 |
+
cv2.setNumThreads(0)
|
34 |
+
|
35 |
+
|
36 |
+
@contextmanager
|
37 |
+
def torch_distributed_zero_first(local_rank: int):
|
38 |
+
"""
|
39 |
+
Decorator to make all processes in distributed training wait for each local_master to do something.
|
40 |
+
"""
|
41 |
+
if local_rank not in [-1, 0]:
|
42 |
+
torch.distributed.barrier()
|
43 |
+
yield
|
44 |
+
if local_rank == 0:
|
45 |
+
torch.distributed.barrier()
|
46 |
+
|
47 |
+
|
48 |
+
def init_seeds(seed=0):
|
49 |
+
random.seed(seed)
|
50 |
+
np.random.seed(seed)
|
51 |
+
init_seeds(seed=seed)
|
52 |
+
|
53 |
+
|
54 |
+
def get_latest_run(search_dir='./runs'):
|
55 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
56 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
57 |
+
return max(last_list, key=os.path.getctime)
|
58 |
+
|
59 |
+
|
60 |
+
def check_git_status():
|
61 |
+
# Suggest 'git pull' if repo is out of date
|
62 |
+
if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'):
|
63 |
+
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
|
64 |
+
if 'Your branch is behind' in s:
|
65 |
+
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
|
66 |
+
|
67 |
+
|
68 |
+
def check_img_size(img_size, s=32):
|
69 |
+
# Verify img_size is a multiple of stride s
|
70 |
+
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
71 |
+
if new_size != img_size:
|
72 |
+
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
73 |
+
return new_size
|
74 |
+
|
75 |
+
|
76 |
+
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
77 |
+
# Check anchor fit to data, recompute if necessary
|
78 |
+
print('\nAnalyzing anchors... ', end='')
|
79 |
+
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
80 |
+
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
81 |
+
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
82 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
83 |
+
|
84 |
+
def metric(k): # compute metric
|
85 |
+
r = wh[:, None] / k[None]
|
86 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
87 |
+
best = x.max(1)[0] # best_x
|
88 |
+
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
89 |
+
bpr = (best > 1. / thr).float().mean() # best possible recall
|
90 |
+
return bpr, aat
|
91 |
+
|
92 |
+
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
|
93 |
+
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
|
94 |
+
if bpr < 0.98: # threshold to recompute
|
95 |
+
print('. Attempting to generate improved anchors, please wait...' % bpr)
|
96 |
+
na = m.anchor_grid.numel() // 2 # number of anchors
|
97 |
+
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
98 |
+
new_bpr = metric(new_anchors.reshape(-1, 2))[0]
|
99 |
+
if new_bpr > bpr: # replace anchors
|
100 |
+
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
|
101 |
+
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
|
102 |
+
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
103 |
+
check_anchor_order(m)
|
104 |
+
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
105 |
+
else:
|
106 |
+
print('Original anchors better than new anchors. Proceeding with original anchors.')
|
107 |
+
print('') # newline
|
108 |
+
|
109 |
+
|
110 |
+
def check_anchor_order(m):
|
111 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
112 |
+
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
113 |
+
da = a[-1] - a[0] # delta a
|
114 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
115 |
+
if da.sign() != ds.sign(): # same order
|
116 |
+
print('Reversing anchor order')
|
117 |
+
m.anchors[:] = m.anchors.flip(0)
|
118 |
+
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
119 |
+
|
120 |
+
|
121 |
+
def check_file(file):
|
122 |
+
# Searches for file if not found locally
|
123 |
+
if os.path.isfile(file) or file == '':
|
124 |
+
return file
|
125 |
+
else:
|
126 |
+
files = glob.glob('./**/' + file, recursive=True) # find file
|
127 |
+
assert len(files), 'File Not Found: %s' % file # assert file was found
|
128 |
+
return files[0] # return first file if multiple found
|
129 |
+
|
130 |
+
|
131 |
+
def check_dataset(dict):
|
132 |
+
# Download dataset if not found
|
133 |
+
train, val = os.path.abspath(dict['train']), os.path.abspath(dict['val']) # data paths
|
134 |
+
if not (os.path.exists(train) and os.path.exists(val)):
|
135 |
+
print('\nWARNING: Dataset not found, nonexistant paths: %s' % [train, val])
|
136 |
+
if 'download' in dict:
|
137 |
+
s = dict['download']
|
138 |
+
print('Attempting autodownload from: %s' % s)
|
139 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
140 |
+
f = Path(s).name # filename
|
141 |
+
torch.hub.download_url_to_file(s, f)
|
142 |
+
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f))
|
143 |
+
else: # bash script
|
144 |
+
r = os.system(s)
|
145 |
+
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
146 |
+
else:
|
147 |
+
Exception('Dataset autodownload unavailable.')
|
148 |
+
|
149 |
+
|
150 |
+
def make_divisible(x, divisor):
|
151 |
+
# Returns x evenly divisble by divisor
|
152 |
+
return math.ceil(x / divisor) * divisor
|
153 |
+
|
154 |
+
|
155 |
+
def labels_to_class_weights(labels, nc=80):
|
156 |
+
# Get class weights (inverse frequency) from training labels
|
157 |
+
if labels[0] is None: # no labels loaded
|
158 |
+
return torch.Tensor()
|
159 |
+
|
160 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
161 |
+
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
162 |
+
weights = np.bincount(classes, minlength=nc) # occurences per class
|
163 |
+
|
164 |
+
# Prepend gridpoint count (for uCE trianing)
|
165 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
166 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
167 |
+
|
168 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
169 |
+
weights = 1 / weights # number of targets per class
|
170 |
+
weights /= weights.sum() # normalize
|
171 |
+
return torch.from_numpy(weights)
|
172 |
+
|
173 |
+
|
174 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
175 |
+
# Produces image weights based on class mAPs
|
176 |
+
n = len(labels)
|
177 |
+
class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])
|
178 |
+
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
179 |
+
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
180 |
+
return image_weights
|
181 |
+
|
182 |
+
|
183 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
184 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
185 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
186 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
187 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
188 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
189 |
+
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
190 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
191 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
def xyxy2xywh(x):
|
196 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
197 |
+
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
|
198 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
199 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
200 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
201 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
202 |
+
return y
|
203 |
+
|
204 |
+
|
205 |
+
def xywh2xyxy(x):
|
206 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
207 |
+
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
|
208 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
209 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
210 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
211 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
212 |
+
return y
|
213 |
+
|
214 |
+
|
215 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
216 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
217 |
+
if ratio_pad is None: # calculate from img0_shape
|
218 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
219 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
220 |
+
else:
|
221 |
+
gain = ratio_pad[0][0]
|
222 |
+
pad = ratio_pad[1]
|
223 |
+
|
224 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
225 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
226 |
+
coords[:, :4] /= gain
|
227 |
+
clip_coords(coords, img0_shape)
|
228 |
+
return coords
|
229 |
+
|
230 |
+
|
231 |
+
def clip_coords(boxes, img_shape):
|
232 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
233 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
234 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
235 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
236 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
237 |
+
|
238 |
+
|
239 |
+
def ap_per_class(tp, conf, pred_cls, target_cls):
|
240 |
+
""" Compute the average precision, given the recall and precision curves.
|
241 |
+
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
242 |
+
# Arguments
|
243 |
+
tp: True positives (nparray, nx1 or nx10).
|
244 |
+
conf: Objectness value from 0-1 (nparray).
|
245 |
+
pred_cls: Predicted object classes (nparray).
|
246 |
+
target_cls: True object classes (nparray).
|
247 |
+
# Returns
|
248 |
+
The average precision as computed in py-faster-rcnn.
|
249 |
+
"""
|
250 |
+
|
251 |
+
# Sort by objectness
|
252 |
+
i = np.argsort(-conf)
|
253 |
+
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
254 |
+
|
255 |
+
# Find unique classes
|
256 |
+
unique_classes = np.unique(target_cls)
|
257 |
+
|
258 |
+
# Create Precision-Recall curve and compute AP for each class
|
259 |
+
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
|
260 |
+
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
|
261 |
+
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
|
262 |
+
for ci, c in enumerate(unique_classes):
|
263 |
+
i = pred_cls == c
|
264 |
+
n_gt = (target_cls == c).sum() # Number of ground truth objects
|
265 |
+
n_p = i.sum() # Number of predicted objects
|
266 |
+
|
267 |
+
if n_p == 0 or n_gt == 0:
|
268 |
+
continue
|
269 |
+
else:
|
270 |
+
# Accumulate FPs and TPs
|
271 |
+
fpc = (1 - tp[i]).cumsum(0)
|
272 |
+
tpc = tp[i].cumsum(0)
|
273 |
+
|
274 |
+
# Recall
|
275 |
+
recall = tpc / (n_gt + 1e-16) # recall curve
|
276 |
+
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
|
277 |
+
|
278 |
+
# Precision
|
279 |
+
precision = tpc / (tpc + fpc) # precision curve
|
280 |
+
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
|
281 |
+
|
282 |
+
# AP from recall-precision curve
|
283 |
+
for j in range(tp.shape[1]):
|
284 |
+
ap[ci, j] = compute_ap(recall[:, j], precision[:, j])
|
285 |
+
|
286 |
+
# Plot
|
287 |
+
# fig, ax = plt.subplots(1, 1, figsize=(5, 5))
|
288 |
+
# ax.plot(recall, precision)
|
289 |
+
# ax.set_xlabel('Recall')
|
290 |
+
# ax.set_ylabel('Precision')
|
291 |
+
# ax.set_xlim(0, 1.01)
|
292 |
+
# ax.set_ylim(0, 1.01)
|
293 |
+
# fig.tight_layout()
|
294 |
+
# fig.savefig('PR_curve.png', dpi=300)
|
295 |
+
|
296 |
+
# Compute F1 score (harmonic mean of precision and recall)
|
297 |
+
f1 = 2 * p * r / (p + r + 1e-16)
|
298 |
+
|
299 |
+
return p, r, ap, f1, unique_classes.astype('int32')
|
300 |
+
|
301 |
+
|
302 |
+
def compute_ap(recall, precision):
|
303 |
+
""" Compute the average precision, given the recall and precision curves.
|
304 |
+
Source: https://github.com/rbgirshick/py-faster-rcnn.
|
305 |
+
# Arguments
|
306 |
+
recall: The recall curve (list).
|
307 |
+
precision: The precision curve (list).
|
308 |
+
# Returns
|
309 |
+
The average precision as computed in py-faster-rcnn.
|
310 |
+
"""
|
311 |
+
|
312 |
+
# Append sentinel values to beginning and end
|
313 |
+
mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)]))
|
314 |
+
mpre = np.concatenate(([0.], precision, [0.]))
|
315 |
+
|
316 |
+
# Compute the precision envelope
|
317 |
+
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
318 |
+
|
319 |
+
# Integrate area under curve
|
320 |
+
method = 'interp' # methods: 'continuous', 'interp'
|
321 |
+
if method == 'interp':
|
322 |
+
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
323 |
+
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
324 |
+
else: # 'continuous'
|
325 |
+
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
326 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
327 |
+
|
328 |
+
return ap
|
329 |
+
|
330 |
+
|
331 |
+
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
|
332 |
+
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
333 |
+
box2 = box2.T
|
334 |
+
|
335 |
+
# Get the coordinates of bounding boxes
|
336 |
+
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
337 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
338 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
339 |
+
else: # transform from xywh to xyxy
|
340 |
+
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
341 |
+
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
342 |
+
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
343 |
+
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
344 |
+
|
345 |
+
# Intersection area
|
346 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
347 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
348 |
+
|
349 |
+
# Union Area
|
350 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
|
351 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
|
352 |
+
union = (w1 * h1 + 1e-16) + w2 * h2 - inter
|
353 |
+
|
354 |
+
iou = inter / union # iou
|
355 |
+
if GIoU or DIoU or CIoU:
|
356 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
357 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
358 |
+
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
|
359 |
+
c_area = cw * ch + 1e-16 # convex area
|
360 |
+
return iou - (c_area - union) / c_area # GIoU
|
361 |
+
if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
362 |
+
# convex diagonal squared
|
363 |
+
c2 = cw ** 2 + ch ** 2 + 1e-16
|
364 |
+
# centerpoint distance squared
|
365 |
+
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
|
366 |
+
if DIoU:
|
367 |
+
return iou - rho2 / c2 # DIoU
|
368 |
+
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
369 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
370 |
+
with torch.no_grad():
|
371 |
+
alpha = v / (1 - iou + v + 1e-16)
|
372 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
373 |
+
|
374 |
+
return iou
|
375 |
+
|
376 |
+
|
377 |
+
def box_iou(box1, box2):
|
378 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
379 |
+
"""
|
380 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
381 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
382 |
+
Arguments:
|
383 |
+
box1 (Tensor[N, 4])
|
384 |
+
box2 (Tensor[M, 4])
|
385 |
+
Returns:
|
386 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
387 |
+
IoU values for every element in boxes1 and boxes2
|
388 |
+
"""
|
389 |
+
|
390 |
+
def box_area(box):
|
391 |
+
# box = 4xn
|
392 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
393 |
+
|
394 |
+
area1 = box_area(box1.T)
|
395 |
+
area2 = box_area(box2.T)
|
396 |
+
|
397 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
398 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
399 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
400 |
+
|
401 |
+
|
402 |
+
def wh_iou(wh1, wh2):
|
403 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
404 |
+
wh1 = wh1[:, None] # [N,1,2]
|
405 |
+
wh2 = wh2[None] # [1,M,2]
|
406 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
407 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
408 |
+
|
409 |
+
|
410 |
+
class FocalLoss(nn.Module):
|
411 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
412 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
413 |
+
super(FocalLoss, self).__init__()
|
414 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
415 |
+
self.gamma = gamma
|
416 |
+
self.alpha = alpha
|
417 |
+
self.reduction = loss_fcn.reduction
|
418 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
419 |
+
|
420 |
+
def forward(self, pred, true):
|
421 |
+
loss = self.loss_fcn(pred, true)
|
422 |
+
# p_t = torch.exp(-loss)
|
423 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
424 |
+
|
425 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
426 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
427 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
428 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
429 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
430 |
+
loss *= alpha_factor * modulating_factor
|
431 |
+
|
432 |
+
if self.reduction == 'mean':
|
433 |
+
return loss.mean()
|
434 |
+
elif self.reduction == 'sum':
|
435 |
+
return loss.sum()
|
436 |
+
else: # 'none'
|
437 |
+
return loss
|
438 |
+
|
439 |
+
|
440 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
441 |
+
# return positive, negative label smoothing BCE targets
|
442 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
443 |
+
|
444 |
+
|
445 |
+
class BCEBlurWithLogitsLoss(nn.Module):
|
446 |
+
# BCEwithLogitLoss() with reduced missing label effects.
|
447 |
+
def __init__(self, alpha=0.05):
|
448 |
+
super(BCEBlurWithLogitsLoss, self).__init__()
|
449 |
+
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
450 |
+
self.alpha = alpha
|
451 |
+
|
452 |
+
def forward(self, pred, true):
|
453 |
+
loss = self.loss_fcn(pred, true)
|
454 |
+
pred = torch.sigmoid(pred) # prob from logits
|
455 |
+
dx = pred - true # reduce only missing label effects
|
456 |
+
# dx = (pred - true).abs() # reduce missing label and false label effects
|
457 |
+
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
458 |
+
loss *= alpha_factor
|
459 |
+
return loss.mean()
|
460 |
+
|
461 |
+
|
462 |
+
def compute_loss(p, targets, model): # predictions, targets, model
|
463 |
+
device = targets.device
|
464 |
+
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
465 |
+
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
|
466 |
+
h = model.hyp # hyperparameters
|
467 |
+
|
468 |
+
# Define criteria
|
469 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
|
470 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
|
471 |
+
|
472 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
473 |
+
cp, cn = smooth_BCE(eps=0.0)
|
474 |
+
|
475 |
+
# Focal loss
|
476 |
+
g = h['fl_gamma'] # focal loss gamma
|
477 |
+
if g > 0:
|
478 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
479 |
+
|
480 |
+
# Losses
|
481 |
+
nt = 0 # number of targets
|
482 |
+
np = len(p) # number of outputs
|
483 |
+
balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
|
484 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
485 |
+
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
486 |
+
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
487 |
+
|
488 |
+
n = b.shape[0] # number of targets
|
489 |
+
if n:
|
490 |
+
nt += n # cumulative targets
|
491 |
+
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
492 |
+
|
493 |
+
# Regression
|
494 |
+
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
495 |
+
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
496 |
+
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
|
497 |
+
giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target)
|
498 |
+
lbox += (1.0 - giou).mean() # giou loss
|
499 |
+
|
500 |
+
# Objectness
|
501 |
+
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
|
502 |
+
|
503 |
+
# Classification
|
504 |
+
if model.nc > 1: # cls loss (only if multiple classes)
|
505 |
+
t = torch.full_like(ps[:, 5:], cn, device=device) # targets
|
506 |
+
t[range(n), tcls[i]] = cp
|
507 |
+
lcls += BCEcls(ps[:, 5:], t) # BCE
|
508 |
+
|
509 |
+
# Append targets to text file
|
510 |
+
# with open('targets.txt', 'a') as file:
|
511 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
512 |
+
|
513 |
+
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
|
514 |
+
|
515 |
+
s = 3 / np # output count scaling
|
516 |
+
lbox *= h['giou'] * s
|
517 |
+
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
|
518 |
+
lcls *= h['cls'] * s
|
519 |
+
bs = tobj.shape[0] # batch size
|
520 |
+
|
521 |
+
loss = lbox + lobj + lcls
|
522 |
+
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
523 |
+
|
524 |
+
|
525 |
+
def build_targets(p, targets, model):
|
526 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
527 |
+
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
528 |
+
na, nt = det.na, targets.shape[0] # number of anchors, targets
|
529 |
+
tcls, tbox, indices, anch = [], [], [], []
|
530 |
+
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
531 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
532 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
533 |
+
|
534 |
+
g = 0.5 # bias
|
535 |
+
off = torch.tensor([[0, 0],
|
536 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
537 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
538 |
+
], device=targets.device).float() * g # offsets
|
539 |
+
|
540 |
+
for i in range(det.nl):
|
541 |
+
anchors = det.anchors[i]
|
542 |
+
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
543 |
+
|
544 |
+
# Match targets to anchors
|
545 |
+
t = targets * gain
|
546 |
+
if nt:
|
547 |
+
# Matches
|
548 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
549 |
+
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
|
550 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
551 |
+
t = t[j] # filter
|
552 |
+
|
553 |
+
# Offsets
|
554 |
+
gxy = t[:, 2:4] # grid xy
|
555 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
556 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
557 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
558 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
559 |
+
t = t.repeat((5, 1, 1))[j]
|
560 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
561 |
+
else:
|
562 |
+
t = targets[0]
|
563 |
+
offsets = 0
|
564 |
+
|
565 |
+
# Define
|
566 |
+
b, c = t[:, :2].long().T # image, class
|
567 |
+
gxy = t[:, 2:4] # grid xy
|
568 |
+
gwh = t[:, 4:6] # grid wh
|
569 |
+
gij = (gxy - offsets).long()
|
570 |
+
gi, gj = gij.T # grid xy indices
|
571 |
+
|
572 |
+
# Append
|
573 |
+
a = t[:, 6].long() # anchor indices
|
574 |
+
indices.append((b, a, gj, gi)) # image, anchor, grid indices
|
575 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
576 |
+
anch.append(anchors[a]) # anchors
|
577 |
+
tcls.append(c) # class
|
578 |
+
|
579 |
+
return tcls, tbox, indices, anch
|
580 |
+
|
581 |
+
|
582 |
+
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
|
583 |
+
"""Performs Non-Maximum Suppression (NMS) on inference results
|
584 |
+
|
585 |
+
Returns:
|
586 |
+
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
|
587 |
+
"""
|
588 |
+
if prediction.dtype is torch.float16:
|
589 |
+
prediction = prediction.float() # to FP32
|
590 |
+
|
591 |
+
nc = prediction[0].shape[1] - 5 # number of classes
|
592 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
593 |
+
|
594 |
+
# Settings
|
595 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
596 |
+
max_det = 300 # maximum number of detections per image
|
597 |
+
time_limit = 10.0 # seconds to quit after
|
598 |
+
redundant = True # require redundant detections
|
599 |
+
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
|
600 |
+
|
601 |
+
t = time.time()
|
602 |
+
output = [None] * prediction.shape[0]
|
603 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
604 |
+
# Apply constraints
|
605 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
606 |
+
x = x[xc[xi]] # confidence
|
607 |
+
|
608 |
+
# If none remain process next image
|
609 |
+
if not x.shape[0]:
|
610 |
+
continue
|
611 |
+
|
612 |
+
# Compute conf
|
613 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
614 |
+
|
615 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
616 |
+
box = xywh2xyxy(x[:, :4])
|
617 |
+
|
618 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
619 |
+
if multi_label:
|
620 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
621 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
622 |
+
else: # best class only
|
623 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
624 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
625 |
+
|
626 |
+
# Filter by class
|
627 |
+
if classes:
|
628 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
629 |
+
|
630 |
+
# Apply finite constraint
|
631 |
+
# if not torch.isfinite(x).all():
|
632 |
+
# x = x[torch.isfinite(x).all(1)]
|
633 |
+
|
634 |
+
# If none remain process next image
|
635 |
+
n = x.shape[0] # number of boxes
|
636 |
+
if not n:
|
637 |
+
continue
|
638 |
+
|
639 |
+
# Sort by confidence
|
640 |
+
# x = x[x[:, 4].argsort(descending=True)]
|
641 |
+
|
642 |
+
# Batched NMS
|
643 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
644 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
645 |
+
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
|
646 |
+
if i.shape[0] > max_det: # limit detections
|
647 |
+
i = i[:max_det]
|
648 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
649 |
+
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
650 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
651 |
+
weights = iou * scores[None] # box weights
|
652 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
653 |
+
if redundant:
|
654 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
655 |
+
except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
|
656 |
+
print(x, i, x.shape, i.shape)
|
657 |
+
pass
|
658 |
+
|
659 |
+
output[xi] = x[i]
|
660 |
+
if (time.time() - t) > time_limit:
|
661 |
+
break # time limit exceeded
|
662 |
+
|
663 |
+
return output
|
664 |
+
|
665 |
+
|
666 |
+
def strip_optimizer(f='weights/best.pt', s=''): # from utils.utils import *; strip_optimizer()
|
667 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
668 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
669 |
+
x['optimizer'] = None
|
670 |
+
x['training_results'] = None
|
671 |
+
x['epoch'] = -1
|
672 |
+
x['model'].half() # to FP16
|
673 |
+
for p in x['model'].parameters():
|
674 |
+
p.requires_grad = False
|
675 |
+
torch.save(x, s or f)
|
676 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
677 |
+
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
|
678 |
+
|
679 |
+
|
680 |
+
def coco_class_count(path='../coco/labels/train2014/'):
|
681 |
+
# Histogram of occurrences per class
|
682 |
+
nc = 80 # number classes
|
683 |
+
x = np.zeros(nc, dtype='int32')
|
684 |
+
files = sorted(glob.glob('%s/*.*' % path))
|
685 |
+
for i, file in enumerate(files):
|
686 |
+
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
|
687 |
+
x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
|
688 |
+
print(i, len(files))
|
689 |
+
|
690 |
+
|
691 |
+
def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people()
|
692 |
+
# Find images with only people
|
693 |
+
files = sorted(glob.glob('%s/*.*' % path))
|
694 |
+
for i, file in enumerate(files):
|
695 |
+
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
|
696 |
+
if all(labels[:, 0] == 0):
|
697 |
+
print(labels.shape[0], file)
|
698 |
+
|
699 |
+
|
700 |
+
def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random()
|
701 |
+
# crops images into random squares up to scale fraction
|
702 |
+
# WARNING: overwrites images!
|
703 |
+
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
|
704 |
+
img = cv2.imread(file) # BGR
|
705 |
+
if img is not None:
|
706 |
+
h, w = img.shape[:2]
|
707 |
+
|
708 |
+
# create random mask
|
709 |
+
a = 30 # minimum size (pixels)
|
710 |
+
mask_h = random.randint(a, int(max(a, h * scale))) # mask height
|
711 |
+
mask_w = mask_h # mask width
|
712 |
+
|
713 |
+
# box
|
714 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
715 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
716 |
+
xmax = min(w, xmin + mask_w)
|
717 |
+
ymax = min(h, ymin + mask_h)
|
718 |
+
|
719 |
+
# apply random color mask
|
720 |
+
cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
|
721 |
+
|
722 |
+
|
723 |
+
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
|
724 |
+
# Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
|
725 |
+
if os.path.exists('new/'):
|
726 |
+
shutil.rmtree('new/') # delete output folder
|
727 |
+
os.makedirs('new/') # make new output folder
|
728 |
+
os.makedirs('new/labels/')
|
729 |
+
os.makedirs('new/images/')
|
730 |
+
for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
|
731 |
+
with open(file, 'r') as f:
|
732 |
+
labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
|
733 |
+
i = labels[:, 0] == label_class
|
734 |
+
if any(i):
|
735 |
+
img_file = file.replace('labels', 'images').replace('txt', 'jpg')
|
736 |
+
labels[:, 0] = 0 # reset class to 0
|
737 |
+
with open('new/images.txt', 'a') as f: # add image to dataset list
|
738 |
+
f.write(img_file + '\n')
|
739 |
+
with open('new/labels/' + Path(file).name, 'a') as f: # write label
|
740 |
+
for l in labels[i]:
|
741 |
+
f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
|
742 |
+
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
|
743 |
+
|
744 |
+
|
745 |
+
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
746 |
+
""" Creates kmeans-evolved anchors from training dataset
|
747 |
+
|
748 |
+
Arguments:
|
749 |
+
path: path to dataset *.yaml, or a loaded dataset
|
750 |
+
n: number of anchors
|
751 |
+
img_size: image size used for training
|
752 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
753 |
+
gen: generations to evolve anchors using genetic algorithm
|
754 |
+
|
755 |
+
Return:
|
756 |
+
k: kmeans evolved anchors
|
757 |
+
|
758 |
+
Usage:
|
759 |
+
from utils.utils import *; _ = kmean_anchors()
|
760 |
+
"""
|
761 |
+
thr = 1. / thr
|
762 |
+
|
763 |
+
def metric(k, wh): # compute metrics
|
764 |
+
r = wh[:, None] / k[None]
|
765 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
766 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
767 |
+
return x, x.max(1)[0] # x, best_x
|
768 |
+
|
769 |
+
def fitness(k): # mutation fitness
|
770 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
771 |
+
return (best * (best > thr).float()).mean() # fitness
|
772 |
+
|
773 |
+
def print_results(k):
|
774 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
775 |
+
x, best = metric(k, wh0)
|
776 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
777 |
+
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
|
778 |
+
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
|
779 |
+
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
|
780 |
+
for i, x in enumerate(k):
|
781 |
+
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
782 |
+
return k
|
783 |
+
|
784 |
+
if isinstance(path, str): # *.yaml file
|
785 |
+
with open(path) as f:
|
786 |
+
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
787 |
+
from utils.datasets import LoadImagesAndLabels
|
788 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
789 |
+
else:
|
790 |
+
dataset = path # dataset
|
791 |
+
|
792 |
+
# Get label wh
|
793 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
794 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
795 |
+
|
796 |
+
# Filter
|
797 |
+
i = (wh0 < 3.0).any(1).sum()
|
798 |
+
if i:
|
799 |
+
print('WARNING: Extremely small objects found. '
|
800 |
+
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
|
801 |
+
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
802 |
+
|
803 |
+
# Kmeans calculation
|
804 |
+
print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
|
805 |
+
s = wh.std(0) # sigmas for whitening
|
806 |
+
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
807 |
+
k *= s
|
808 |
+
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
809 |
+
wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered
|
810 |
+
k = print_results(k)
|
811 |
+
|
812 |
+
# Plot
|
813 |
+
# k, d = [None] * 20, [None] * 20
|
814 |
+
# for i in tqdm(range(1, 21)):
|
815 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
816 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7))
|
817 |
+
# ax = ax.ravel()
|
818 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
819 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
820 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
821 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
822 |
+
# fig.tight_layout()
|
823 |
+
# fig.savefig('wh.png', dpi=200)
|
824 |
+
|
825 |
+
# Evolve
|
826 |
+
npr = np.random
|
827 |
+
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
828 |
+
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
|
829 |
+
for _ in pbar:
|
830 |
+
v = np.ones(sh)
|
831 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
832 |
+
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
833 |
+
kg = (k.copy() * v).clip(min=2.0)
|
834 |
+
fg = fitness(kg)
|
835 |
+
if fg > f:
|
836 |
+
f, k = fg, kg.copy()
|
837 |
+
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
|
838 |
+
if verbose:
|
839 |
+
print_results(k)
|
840 |
+
|
841 |
+
return print_results(k)
|
842 |
+
|
843 |
+
|
844 |
+
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
845 |
+
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
846 |
+
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
847 |
+
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
848 |
+
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
849 |
+
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
850 |
+
|
851 |
+
if bucket:
|
852 |
+
os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt
|
853 |
+
|
854 |
+
with open('evolve.txt', 'a') as f: # append result
|
855 |
+
f.write(c + b + '\n')
|
856 |
+
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
857 |
+
x = x[np.argsort(-fitness(x))] # sort
|
858 |
+
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
859 |
+
|
860 |
+
if bucket:
|
861 |
+
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
|
862 |
+
|
863 |
+
# Save yaml
|
864 |
+
for i, k in enumerate(hyp.keys()):
|
865 |
+
hyp[k] = float(x[0, i + 7])
|
866 |
+
with open(yaml_file, 'w') as f:
|
867 |
+
results = tuple(x[0, :7])
|
868 |
+
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
869 |
+
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
870 |
+
yaml.dump(hyp, f, sort_keys=False)
|
871 |
+
|
872 |
+
|
873 |
+
def apply_classifier(x, model, img, im0):
|
874 |
+
# applies a second stage classifier to yolo outputs
|
875 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
876 |
+
for i, d in enumerate(x): # per image
|
877 |
+
if d is not None and len(d):
|
878 |
+
d = d.clone()
|
879 |
+
|
880 |
+
# Reshape and pad cutouts
|
881 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
882 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
883 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
884 |
+
d[:, :4] = xywh2xyxy(b).long()
|
885 |
+
|
886 |
+
# Rescale boxes from img_size to im0 size
|
887 |
+
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
888 |
+
|
889 |
+
# Classes
|
890 |
+
pred_cls1 = d[:, 5].long()
|
891 |
+
ims = []
|
892 |
+
for j, a in enumerate(d): # per item
|
893 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
894 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
895 |
+
# cv2.imwrite('test%i.jpg' % j, cutout)
|
896 |
+
|
897 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
898 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
899 |
+
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
900 |
+
ims.append(im)
|
901 |
+
|
902 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
903 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
904 |
+
|
905 |
+
return x
|
906 |
+
|
907 |
+
|
908 |
+
def fitness(x):
|
909 |
+
# Returns fitness (for use with results.txt or evolve.txt)
|
910 |
+
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
911 |
+
return (x[:, :4] * w).sum(1)
|
912 |
+
|
913 |
+
|
914 |
+
def output_to_target(output, width, height):
|
915 |
+
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
916 |
+
if isinstance(output, torch.Tensor):
|
917 |
+
output = output.cpu().numpy()
|
918 |
+
|
919 |
+
targets = []
|
920 |
+
for i, o in enumerate(output):
|
921 |
+
if o is not None:
|
922 |
+
for pred in o:
|
923 |
+
box = pred[:4]
|
924 |
+
w = (box[2] - box[0]) / width
|
925 |
+
h = (box[3] - box[1]) / height
|
926 |
+
x = box[0] / width + w / 2
|
927 |
+
y = box[1] / height + h / 2
|
928 |
+
conf = pred[4]
|
929 |
+
cls = int(pred[5])
|
930 |
+
|
931 |
+
targets.append([i, cls, x, y, w, h, conf])
|
932 |
+
|
933 |
+
return np.array(targets)
|
934 |
+
|
935 |
+
|
936 |
+
def increment_dir(dir, comment=''):
|
937 |
+
# Increments a directory runs/exp1 --> runs/exp2_comment
|
938 |
+
n = 0 # number
|
939 |
+
dir = str(Path(dir)) # os-agnostic
|
940 |
+
d = sorted(glob.glob(dir + '*')) # directories
|
941 |
+
if len(d):
|
942 |
+
n = max([int(x[len(dir):x.find('_') if '_' in x else None]) for x in d]) + 1 # increment
|
943 |
+
return dir + str(n) + ('_' + comment if comment else '')
|
944 |
+
|
945 |
+
|
946 |
+
# Plotting functions ---------------------------------------------------------------------------------------------------
|
947 |
+
def hist2d(x, y, n=100):
|
948 |
+
# 2d histogram used in labels.png and evolve.png
|
949 |
+
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
950 |
+
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
951 |
+
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
952 |
+
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
953 |
+
return np.log(hist[xidx, yidx])
|
954 |
+
|
955 |
+
|
956 |
+
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
957 |
+
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
958 |
+
def butter_lowpass(cutoff, fs, order):
|
959 |
+
nyq = 0.5 * fs
|
960 |
+
normal_cutoff = cutoff / nyq
|
961 |
+
b, a = butter(order, normal_cutoff, btype='low', analog=False)
|
962 |
+
return b, a
|
963 |
+
|
964 |
+
b, a = butter_lowpass(cutoff, fs, order=order)
|
965 |
+
return filtfilt(b, a, data) # forward-backward filter
|
966 |
+
|
967 |
+
|
968 |
+
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
|
969 |
+
# Plots one bounding box on image img
|
970 |
+
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
971 |
+
color = color or [random.randint(0, 255) for _ in range(3)]
|
972 |
+
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
973 |
+
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
974 |
+
if label:
|
975 |
+
tf = max(tl - 1, 1) # font thickness
|
976 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
977 |
+
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
978 |
+
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
979 |
+
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
980 |
+
|
981 |
+
|
982 |
+
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
|
983 |
+
# Compares the two methods for width-height anchor multiplication
|
984 |
+
# https://github.com/ultralytics/yolov3/issues/168
|
985 |
+
x = np.arange(-4.0, 4.0, .1)
|
986 |
+
ya = np.exp(x)
|
987 |
+
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
988 |
+
|
989 |
+
fig = plt.figure(figsize=(6, 3), dpi=150)
|
990 |
+
plt.plot(x, ya, '.-', label='YOLOv3')
|
991 |
+
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
992 |
+
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
993 |
+
plt.xlim(left=-4, right=4)
|
994 |
+
plt.ylim(bottom=0, top=6)
|
995 |
+
plt.xlabel('input')
|
996 |
+
plt.ylabel('output')
|
997 |
+
plt.grid()
|
998 |
+
plt.legend()
|
999 |
+
fig.tight_layout()
|
1000 |
+
fig.savefig('comparison.png', dpi=200)
|
1001 |
+
|
1002 |
+
|
1003 |
+
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
1004 |
+
tl = 3 # line thickness
|
1005 |
+
tf = max(tl - 1, 1) # font thickness
|
1006 |
+
if os.path.isfile(fname): # do not overwrite
|
1007 |
+
return None
|
1008 |
+
|
1009 |
+
if isinstance(images, torch.Tensor):
|
1010 |
+
images = images.cpu().float().numpy()
|
1011 |
+
|
1012 |
+
if isinstance(targets, torch.Tensor):
|
1013 |
+
targets = targets.cpu().numpy()
|
1014 |
+
|
1015 |
+
# un-normalise
|
1016 |
+
if np.max(images[0]) <= 1:
|
1017 |
+
images *= 255
|
1018 |
+
|
1019 |
+
bs, _, h, w = images.shape # batch size, _, height, width
|
1020 |
+
bs = min(bs, max_subplots) # limit plot images
|
1021 |
+
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
1022 |
+
|
1023 |
+
# Check if we should resize
|
1024 |
+
scale_factor = max_size / max(h, w)
|
1025 |
+
if scale_factor < 1:
|
1026 |
+
h = math.ceil(scale_factor * h)
|
1027 |
+
w = math.ceil(scale_factor * w)
|
1028 |
+
|
1029 |
+
# Empty array for output
|
1030 |
+
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)
|
1031 |
+
|
1032 |
+
# Fix class - colour map
|
1033 |
+
prop_cycle = plt.rcParams['axes.prop_cycle']
|
1034 |
+
# https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
1035 |
+
hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
1036 |
+
color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']]
|
1037 |
+
|
1038 |
+
for i, img in enumerate(images):
|
1039 |
+
if i == max_subplots: # if last batch has fewer images than we expect
|
1040 |
+
break
|
1041 |
+
|
1042 |
+
block_x = int(w * (i // ns))
|
1043 |
+
block_y = int(h * (i % ns))
|
1044 |
+
|
1045 |
+
img = img.transpose(1, 2, 0)
|
1046 |
+
if scale_factor < 1:
|
1047 |
+
img = cv2.resize(img, (w, h))
|
1048 |
+
|
1049 |
+
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
1050 |
+
if len(targets) > 0:
|
1051 |
+
image_targets = targets[targets[:, 0] == i]
|
1052 |
+
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
1053 |
+
classes = image_targets[:, 1].astype('int')
|
1054 |
+
gt = image_targets.shape[1] == 6 # ground truth if no conf column
|
1055 |
+
conf = None if gt else image_targets[:, 6] # check for confidence presence (gt vs pred)
|
1056 |
+
|
1057 |
+
boxes[[0, 2]] *= w
|
1058 |
+
boxes[[0, 2]] += block_x
|
1059 |
+
boxes[[1, 3]] *= h
|
1060 |
+
boxes[[1, 3]] += block_y
|
1061 |
+
for j, box in enumerate(boxes.T):
|
1062 |
+
cls = int(classes[j])
|
1063 |
+
color = color_lut[cls % len(color_lut)]
|
1064 |
+
cls = names[cls] if names else cls
|
1065 |
+
if gt or conf[j] > 0.3: # 0.3 conf thresh
|
1066 |
+
label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j])
|
1067 |
+
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
1068 |
+
|
1069 |
+
# Draw image filename labels
|
1070 |
+
if paths is not None:
|
1071 |
+
label = os.path.basename(paths[i])[:40] # trim to 40 char
|
1072 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
1073 |
+
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
1074 |
+
lineType=cv2.LINE_AA)
|
1075 |
+
|
1076 |
+
# Image border
|
1077 |
+
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
1078 |
+
|
1079 |
+
if fname is not None:
|
1080 |
+
mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA)
|
1081 |
+
cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB))
|
1082 |
+
|
1083 |
+
return mosaic
|
1084 |
+
|
1085 |
+
|
1086 |
+
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
1087 |
+
# Plot LR simulating training for full epochs
|
1088 |
+
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
1089 |
+
y = []
|
1090 |
+
for _ in range(epochs):
|
1091 |
+
scheduler.step()
|
1092 |
+
y.append(optimizer.param_groups[0]['lr'])
|
1093 |
+
plt.plot(y, '.-', label='LR')
|
1094 |
+
plt.xlabel('epoch')
|
1095 |
+
plt.ylabel('LR')
|
1096 |
+
plt.grid()
|
1097 |
+
plt.xlim(0, epochs)
|
1098 |
+
plt.ylim(0)
|
1099 |
+
plt.tight_layout()
|
1100 |
+
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
1101 |
+
|
1102 |
+
|
1103 |
+
def plot_test_txt(): # from utils.utils import *; plot_test()
|
1104 |
+
# Plot test.txt histograms
|
1105 |
+
x = np.loadtxt('test.txt', dtype=np.float32)
|
1106 |
+
box = xyxy2xywh(x[:, :4])
|
1107 |
+
cx, cy = box[:, 0], box[:, 1]
|
1108 |
+
|
1109 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
1110 |
+
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
1111 |
+
ax.set_aspect('equal')
|
1112 |
+
plt.savefig('hist2d.png', dpi=300)
|
1113 |
+
|
1114 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
1115 |
+
ax[0].hist(cx, bins=600)
|
1116 |
+
ax[1].hist(cy, bins=600)
|
1117 |
+
plt.savefig('hist1d.png', dpi=200)
|
1118 |
+
|
1119 |
+
|
1120 |
+
def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
|
1121 |
+
# Plot targets.txt histograms
|
1122 |
+
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
1123 |
+
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
1124 |
+
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
1125 |
+
ax = ax.ravel()
|
1126 |
+
for i in range(4):
|
1127 |
+
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
1128 |
+
ax[i].legend()
|
1129 |
+
ax[i].set_title(s[i])
|
1130 |
+
plt.savefig('targets.jpg', dpi=200)
|
1131 |
+
|
1132 |
+
|
1133 |
+
def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
|
1134 |
+
# Plot study.txt generated by test.py
|
1135 |
+
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
1136 |
+
ax = ax.ravel()
|
1137 |
+
|
1138 |
+
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
1139 |
+
for f in ['coco_study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]:
|
1140 |
+
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
1141 |
+
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
1142 |
+
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
1143 |
+
for i in range(7):
|
1144 |
+
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
1145 |
+
ax[i].set_title(s[i])
|
1146 |
+
|
1147 |
+
j = y[3].argmax() + 1
|
1148 |
+
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
1149 |
+
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
1150 |
+
|
1151 |
+
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.8, 39.6, 43.0, 47.5, 49.4, 50.7],
|
1152 |
+
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
1153 |
+
|
1154 |
+
ax2.grid()
|
1155 |
+
ax2.set_xlim(0, 30)
|
1156 |
+
ax2.set_ylim(28, 50)
|
1157 |
+
ax2.set_yticks(np.arange(30, 55, 5))
|
1158 |
+
ax2.set_xlabel('GPU Speed (ms/img)')
|
1159 |
+
ax2.set_ylabel('COCO AP val')
|
1160 |
+
ax2.legend(loc='lower right')
|
1161 |
+
plt.savefig('study_mAP_latency.png', dpi=300)
|
1162 |
+
plt.savefig(f.replace('.txt', '.png'), dpi=200)
|
1163 |
+
|
1164 |
+
|
1165 |
+
def plot_labels(labels, save_dir=''):
|
1166 |
+
# plot dataset labels
|
1167 |
+
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
1168 |
+
nc = int(c.max() + 1) # number of classes
|
1169 |
+
|
1170 |
+
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
1171 |
+
ax = ax.ravel()
|
1172 |
+
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
1173 |
+
ax[0].set_xlabel('classes')
|
1174 |
+
ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
|
1175 |
+
ax[1].set_xlabel('x')
|
1176 |
+
ax[1].set_ylabel('y')
|
1177 |
+
ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
|
1178 |
+
ax[2].set_xlabel('width')
|
1179 |
+
ax[2].set_ylabel('height')
|
1180 |
+
plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
|
1181 |
+
plt.close()
|
1182 |
+
|
1183 |
+
|
1184 |
+
def plot_evolution(yaml_file='runs/evolve/hyp_evolved.yaml'): # from utils.utils import *; plot_evolution()
|
1185 |
+
# Plot hyperparameter evolution results in evolve.txt
|
1186 |
+
with open(yaml_file) as f:
|
1187 |
+
hyp = yaml.load(f, Loader=yaml.FullLoader)
|
1188 |
+
x = np.loadtxt('evolve.txt', ndmin=2)
|
1189 |
+
f = fitness(x)
|
1190 |
+
# weights = (f - f.min()) ** 2 # for weighted results
|
1191 |
+
plt.figure(figsize=(10, 10), tight_layout=True)
|
1192 |
+
matplotlib.rc('font', **{'size': 8})
|
1193 |
+
for i, (k, v) in enumerate(hyp.items()):
|
1194 |
+
y = x[:, i + 7]
|
1195 |
+
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
1196 |
+
mu = y[f.argmax()] # best single result
|
1197 |
+
plt.subplot(5, 5, i + 1)
|
1198 |
+
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
1199 |
+
plt.plot(mu, f.max(), 'k+', markersize=15)
|
1200 |
+
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
1201 |
+
if i % 5 != 0:
|
1202 |
+
plt.yticks([])
|
1203 |
+
print('%15s: %.3g' % (k, mu))
|
1204 |
+
plt.savefig('evolve.png', dpi=200)
|
1205 |
+
print('\nPlot saved as evolve.png')
|
1206 |
+
|
1207 |
+
|
1208 |
+
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()
|
1209 |
+
# Plot training 'results*.txt', overlaying train and val losses
|
1210 |
+
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
1211 |
+
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
1212 |
+
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
1213 |
+
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
1214 |
+
n = results.shape[1] # number of rows
|
1215 |
+
x = range(start, min(stop, n) if stop else n)
|
1216 |
+
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
1217 |
+
ax = ax.ravel()
|
1218 |
+
for i in range(5):
|
1219 |
+
for j in [i, i + 5]:
|
1220 |
+
y = results[j, x]
|
1221 |
+
ax[i].plot(x, y, marker='.', label=s[j])
|
1222 |
+
# y_smooth = butter_lowpass_filtfilt(y)
|
1223 |
+
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
1224 |
+
|
1225 |
+
ax[i].set_title(t[i])
|
1226 |
+
ax[i].legend()
|
1227 |
+
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
1228 |
+
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
1229 |
+
|
1230 |
+
|
1231 |
+
def plot_results(start=0, stop=0, bucket='', id=(), labels=(),
|
1232 |
+
save_dir=''): # from utils.utils import *; plot_results()
|
1233 |
+
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
|
1234 |
+
fig, ax = plt.subplots(2, 5, figsize=(12, 6))
|
1235 |
+
ax = ax.ravel()
|
1236 |
+
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
|
1237 |
+
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
1238 |
+
if bucket:
|
1239 |
+
os.system('rm -rf storage.googleapis.com')
|
1240 |
+
files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
1241 |
+
else:
|
1242 |
+
files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt')
|
1243 |
+
for fi, f in enumerate(files):
|
1244 |
+
try:
|
1245 |
+
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
1246 |
+
n = results.shape[1] # number of rows
|
1247 |
+
x = range(start, min(stop, n) if stop else n)
|
1248 |
+
for i in range(10):
|
1249 |
+
y = results[i, x]
|
1250 |
+
if i in [0, 1, 2, 5, 6, 7]:
|
1251 |
+
y[y == 0] = np.nan # dont show zero loss values
|
1252 |
+
# y /= y[0] # normalize
|
1253 |
+
label = labels[fi] if len(labels) else Path(f).stem
|
1254 |
+
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
|
1255 |
+
ax[i].set_title(s[i])
|
1256 |
+
# if i in [5, 6, 7]: # share train and val loss y axes
|
1257 |
+
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
1258 |
+
except:
|
1259 |
+
print('Warning: Plotting error for %s, skipping file' % f)
|
1260 |
+
|
1261 |
+
fig.tight_layout()
|
1262 |
+
ax[1].legend()
|
1263 |
+
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
utils/google_utils.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
|
2 |
+
# pip install --upgrade google-cloud-storage
|
3 |
+
# from google.cloud import storage
|
4 |
+
|
5 |
+
import os
|
6 |
+
import platform
|
7 |
+
import time
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
|
11 |
+
def attempt_download(weights):
|
12 |
+
# Attempt to download pretrained weights if not found locally
|
13 |
+
weights = weights.strip().replace("'", '')
|
14 |
+
msg = weights + ' missing, try downloading from https://drive.google.com/drive/folders/1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J'
|
15 |
+
|
16 |
+
r = 1 # return
|
17 |
+
if len(weights) > 0 and not os.path.isfile(weights):
|
18 |
+
d = {'yolov3-spp.pt': '1mM67oNw4fZoIOL1c8M3hHmj66d8e-ni_', # yolov3-spp.yaml
|
19 |
+
'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO', # yolov5s.yaml
|
20 |
+
'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr', # yolov5m.yaml
|
21 |
+
'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV', # yolov5l.yaml
|
22 |
+
'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS', # yolov5x.yaml
|
23 |
+
}
|
24 |
+
|
25 |
+
file = Path(weights).name
|
26 |
+
if file in d:
|
27 |
+
r = gdrive_download(id=d[file], name=weights)
|
28 |
+
|
29 |
+
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
|
30 |
+
os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
|
31 |
+
s = 'curl -L -o %s "storage.googleapis.com/ultralytics/yolov5/ckpt/%s"' % (weights, file)
|
32 |
+
r = os.system(s) # execute, capture return values
|
33 |
+
|
34 |
+
# Error check
|
35 |
+
if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
|
36 |
+
os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
|
37 |
+
raise Exception(msg)
|
38 |
+
|
39 |
+
|
40 |
+
def gdrive_download(id='1n_oKgR81BJtqk75b00eAjdv03qVCQn2f', name='coco128.zip'):
|
41 |
+
# Downloads a file from Google Drive, accepting presented query
|
42 |
+
# from utils.google_utils import *; gdrive_download()
|
43 |
+
t = time.time()
|
44 |
+
|
45 |
+
print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
|
46 |
+
os.remove(name) if os.path.exists(name) else None # remove existing
|
47 |
+
os.remove('cookie') if os.path.exists('cookie') else None
|
48 |
+
|
49 |
+
# Attempt file download
|
50 |
+
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
51 |
+
os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out))
|
52 |
+
if os.path.exists('cookie'): # large file
|
53 |
+
s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name)
|
54 |
+
else: # small file
|
55 |
+
s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id)
|
56 |
+
r = os.system(s) # execute, capture return values
|
57 |
+
os.remove('cookie') if os.path.exists('cookie') else None
|
58 |
+
|
59 |
+
# Error check
|
60 |
+
if r != 0:
|
61 |
+
os.remove(name) if os.path.exists(name) else None # remove partial
|
62 |
+
print('Download error ') # raise Exception('Download error')
|
63 |
+
return r
|
64 |
+
|
65 |
+
# Unzip if archive
|
66 |
+
if name.endswith('.zip'):
|
67 |
+
print('unzipping... ', end='')
|
68 |
+
os.system('unzip -q %s' % name) # unzip
|
69 |
+
os.remove(name) # remove zip to free space
|
70 |
+
|
71 |
+
print('Done (%.1fs)' % (time.time() - t))
|
72 |
+
return r
|
73 |
+
|
74 |
+
|
75 |
+
def get_token(cookie="./cookie"):
|
76 |
+
with open(cookie) as f:
|
77 |
+
for line in f:
|
78 |
+
if "download" in line:
|
79 |
+
return line.split()[-1]
|
80 |
+
return ""
|
81 |
+
|
82 |
+
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
83 |
+
# # Uploads a file to a bucket
|
84 |
+
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
85 |
+
#
|
86 |
+
# storage_client = storage.Client()
|
87 |
+
# bucket = storage_client.get_bucket(bucket_name)
|
88 |
+
# blob = bucket.blob(destination_blob_name)
|
89 |
+
#
|
90 |
+
# blob.upload_from_filename(source_file_name)
|
91 |
+
#
|
92 |
+
# print('File {} uploaded to {}.'.format(
|
93 |
+
# source_file_name,
|
94 |
+
# destination_blob_name))
|
95 |
+
#
|
96 |
+
#
|
97 |
+
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
98 |
+
# # Uploads a blob from a bucket
|
99 |
+
# storage_client = storage.Client()
|
100 |
+
# bucket = storage_client.get_bucket(bucket_name)
|
101 |
+
# blob = bucket.blob(source_blob_name)
|
102 |
+
#
|
103 |
+
# blob.download_to_filename(destination_file_name)
|
104 |
+
#
|
105 |
+
# print('Blob {} downloaded to {}.'.format(
|
106 |
+
# source_blob_name,
|
107 |
+
# destination_file_name))
|
utils/torch_utils.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torchvision.models as models
|
11 |
+
|
12 |
+
|
13 |
+
def init_seeds(seed=0):
|
14 |
+
torch.manual_seed(seed)
|
15 |
+
|
16 |
+
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
17 |
+
if seed == 0: # slower, more reproducible
|
18 |
+
cudnn.deterministic = True
|
19 |
+
cudnn.benchmark = False
|
20 |
+
else: # faster, less reproducible
|
21 |
+
cudnn.deterministic = False
|
22 |
+
cudnn.benchmark = True
|
23 |
+
|
24 |
+
|
25 |
+
def select_device(device='', batch_size=None):
|
26 |
+
# device = 'cpu' or '0' or '0,1,2,3'
|
27 |
+
cpu_request = device.lower() == 'cpu'
|
28 |
+
if device and not cpu_request: # if device requested other than 'cpu'
|
29 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
30 |
+
assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
|
31 |
+
|
32 |
+
cuda = False if cpu_request else torch.cuda.is_available()
|
33 |
+
if cuda:
|
34 |
+
c = 1024 ** 2 # bytes to MB
|
35 |
+
ng = torch.cuda.device_count()
|
36 |
+
if ng > 1 and batch_size: # check that batch_size is compatible with device_count
|
37 |
+
assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
|
38 |
+
x = [torch.cuda.get_device_properties(i) for i in range(ng)]
|
39 |
+
s = 'Using CUDA '
|
40 |
+
for i in range(0, ng):
|
41 |
+
if i == 1:
|
42 |
+
s = ' ' * len(s)
|
43 |
+
print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
|
44 |
+
(s, i, x[i].name, x[i].total_memory / c))
|
45 |
+
else:
|
46 |
+
print('Using CPU')
|
47 |
+
|
48 |
+
print('') # skip a line
|
49 |
+
return torch.device('cuda:0' if cuda else 'cpu')
|
50 |
+
|
51 |
+
|
52 |
+
def time_synchronized():
|
53 |
+
torch.cuda.synchronize() if torch.cuda.is_available() else None
|
54 |
+
return time.time()
|
55 |
+
|
56 |
+
|
57 |
+
def is_parallel(model):
|
58 |
+
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
59 |
+
|
60 |
+
|
61 |
+
def intersect_dicts(da, db, exclude=()):
|
62 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
63 |
+
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
64 |
+
|
65 |
+
|
66 |
+
def initialize_weights(model):
|
67 |
+
for m in model.modules():
|
68 |
+
t = type(m)
|
69 |
+
if t is nn.Conv2d:
|
70 |
+
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
71 |
+
elif t is nn.BatchNorm2d:
|
72 |
+
m.eps = 1e-3
|
73 |
+
m.momentum = 0.03
|
74 |
+
elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
75 |
+
m.inplace = True
|
76 |
+
|
77 |
+
|
78 |
+
def find_modules(model, mclass=nn.Conv2d):
|
79 |
+
# Finds layer indices matching module class 'mclass'
|
80 |
+
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
81 |
+
|
82 |
+
|
83 |
+
def sparsity(model):
|
84 |
+
# Return global model sparsity
|
85 |
+
a, b = 0., 0.
|
86 |
+
for p in model.parameters():
|
87 |
+
a += p.numel()
|
88 |
+
b += (p == 0).sum()
|
89 |
+
return b / a
|
90 |
+
|
91 |
+
|
92 |
+
def prune(model, amount=0.3):
|
93 |
+
# Prune model to requested global sparsity
|
94 |
+
import torch.nn.utils.prune as prune
|
95 |
+
print('Pruning model... ', end='')
|
96 |
+
for name, m in model.named_modules():
|
97 |
+
if isinstance(m, nn.Conv2d):
|
98 |
+
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
99 |
+
prune.remove(m, 'weight') # make permanent
|
100 |
+
print(' %.3g global sparsity' % sparsity(model))
|
101 |
+
|
102 |
+
|
103 |
+
def fuse_conv_and_bn(conv, bn):
|
104 |
+
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
105 |
+
with torch.no_grad():
|
106 |
+
# init
|
107 |
+
fusedconv = nn.Conv2d(conv.in_channels,
|
108 |
+
conv.out_channels,
|
109 |
+
kernel_size=conv.kernel_size,
|
110 |
+
stride=conv.stride,
|
111 |
+
padding=conv.padding,
|
112 |
+
bias=True).to(conv.weight.device)
|
113 |
+
|
114 |
+
# prepare filters
|
115 |
+
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
116 |
+
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
117 |
+
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
|
118 |
+
|
119 |
+
# prepare spatial bias
|
120 |
+
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
121 |
+
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
122 |
+
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
123 |
+
|
124 |
+
return fusedconv
|
125 |
+
|
126 |
+
|
127 |
+
def model_info(model, verbose=False):
|
128 |
+
# Plots a line-by-line description of a PyTorch model
|
129 |
+
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
130 |
+
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
131 |
+
if verbose:
|
132 |
+
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
133 |
+
for i, (name, p) in enumerate(model.named_parameters()):
|
134 |
+
name = name.replace('module_list.', '')
|
135 |
+
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
136 |
+
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
137 |
+
|
138 |
+
try: # FLOPS
|
139 |
+
from thop import profile
|
140 |
+
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
|
141 |
+
fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
|
142 |
+
except:
|
143 |
+
fs = ''
|
144 |
+
|
145 |
+
print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
|
146 |
+
|
147 |
+
|
148 |
+
def load_classifier(name='resnet101', n=2):
|
149 |
+
# Loads a pretrained model reshaped to n-class output
|
150 |
+
model = models.__dict__[name](pretrained=True)
|
151 |
+
|
152 |
+
# Display model properties
|
153 |
+
input_size = [3, 224, 224]
|
154 |
+
input_space = 'RGB'
|
155 |
+
input_range = [0, 1]
|
156 |
+
mean = [0.485, 0.456, 0.406]
|
157 |
+
std = [0.229, 0.224, 0.225]
|
158 |
+
for x in [input_size, input_space, input_range, mean, std]:
|
159 |
+
print(x + ' =', eval(x))
|
160 |
+
|
161 |
+
# Reshape output to n classes
|
162 |
+
filters = model.fc.weight.shape[1]
|
163 |
+
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
164 |
+
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
165 |
+
model.fc.out_features = n
|
166 |
+
return model
|
167 |
+
|
168 |
+
|
169 |
+
def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
|
170 |
+
# scales img(bs,3,y,x) by ratio
|
171 |
+
if ratio == 1.0:
|
172 |
+
return img
|
173 |
+
else:
|
174 |
+
h, w = img.shape[2:]
|
175 |
+
s = (int(h * ratio), int(w * ratio)) # new size
|
176 |
+
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
177 |
+
if not same_shape: # pad/crop img
|
178 |
+
gs = 32 # (pixels) grid size
|
179 |
+
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
180 |
+
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
181 |
+
|
182 |
+
|
183 |
+
def copy_attr(a, b, include=(), exclude=()):
|
184 |
+
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
185 |
+
for k, v in b.__dict__.items():
|
186 |
+
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
187 |
+
continue
|
188 |
+
else:
|
189 |
+
setattr(a, k, v)
|
190 |
+
|
191 |
+
|
192 |
+
class ModelEMA:
|
193 |
+
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
194 |
+
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
195 |
+
This is intended to allow functionality like
|
196 |
+
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
197 |
+
A smoothed version of the weights is necessary for some training schemes to perform well.
|
198 |
+
This class is sensitive where it is initialized in the sequence of model init,
|
199 |
+
GPU assignment and distributed training wrappers.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self, model, decay=0.9999, updates=0):
|
203 |
+
# Create EMA
|
204 |
+
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
205 |
+
# if next(model.parameters()).device.type != 'cpu':
|
206 |
+
# self.ema.half() # FP16 EMA
|
207 |
+
self.updates = updates # number of EMA updates
|
208 |
+
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
209 |
+
for p in self.ema.parameters():
|
210 |
+
p.requires_grad_(False)
|
211 |
+
|
212 |
+
def update(self, model):
|
213 |
+
# Update EMA parameters
|
214 |
+
with torch.no_grad():
|
215 |
+
self.updates += 1
|
216 |
+
d = self.decay(self.updates)
|
217 |
+
|
218 |
+
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
219 |
+
for k, v in self.ema.state_dict().items():
|
220 |
+
if v.dtype.is_floating_point:
|
221 |
+
v *= d
|
222 |
+
v += (1. - d) * msd[k].detach()
|
223 |
+
|
224 |
+
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
225 |
+
# Update EMA attributes
|
226 |
+
copy_attr(self.ema, model, include, exclude)
|