import os from pathlib import Path from PIL import Image import torch import torch.backends.cudnn as cudnn from numpy import random from models.experimental import attempt_load from utils.datasets import LoadImages from utils.general import (non_max_suppression, scale_coords, xyxy2xywh) from utils.torch_utils import select_device import gradio as gr import huggingface_hub from crop import crop class FaceCrop: def __init__(self): self.device = select_device() self.half = self.device.type != 'cpu' self.results = [] def load_dataset(self, source): self.source = source self.dataset = LoadImages(source) print(f'Successfully load {source}') def load_model(self, model): self.model = attempt_load(model, map_location=self.device) if self.half: self.model.half() print(f'Successfully load model weights from {model}') def set_crop_config(self, target_size, mode=0, face_ratio=3, threshold=1.5): self.target_size = target_size self.mode = mode self.face_ratio = face_ratio self.threshold = threshold def info(self): attributes = dir(self) for attribute in attributes: if not attribute.startswith('__') and not callable(getattr(self, attribute)): value = getattr(self, attribute) print(attribute, " = ", value) def process(self): for path, img, im0s, vid_cap in self.dataset: img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = self.model(img, augment=False)[0] # Apply NMS pred = non_max_suppression(pred) # Process detections for i, det in enumerate(pred): # detections per image p, s, im0 = path, '', im0s #txt_path = str(Path(out) / Path(p).stem) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Write results for *xyxy, conf, cls in det: if conf > 0.6: # Write to file x, y, w, h = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() self.results.append(crop(self.source, (x, y), mode=self.mode, size=self.target_size, box=(w, h), face_ratio=self.face_ratio, shreshold=self.threshold)) def run(img, mode, width, height, face_ratio, threshold): face_crop_pipeline.load_dataset(img) face_crop_pipeline.set_crop_config(mode=mode, target_size=(width,height), face_ratio=face_ratio, threshold=threshold) face_crop_pipeline.process() return face_crop_pipeline.results if __name__ == '__main__': model_path = huggingface_hub.hf_hub_download("Carzit/yolo5x_anime", "yolov5x_anime.pt") face_crop_pipeline = FaceCrop() face_crop_pipeline.load_model(model_path) app = gr.Blocks() with app: gr.Markdown("# Face Crop Anime") with gr.Row(): input_img = gr.Image(label="Input Image", image_mode="RGB", type='filepath') output_img = gr.Gallery(label="Cropped Image") with gr.Row(): crop_mode = gr.Dropdown(['Auto', 'No Scale', 'Full Screen', 'Fixed Face Propotion'], label="Crop Mode", value='Auto', type='index') tgt_width = gr.Slider(32, 2048, value=512, label="Width") tgt_height = gr.Slider(32, 2048, value=512, label="Height") with gr.Row(): face_ratio = gr.Slider(1, 5, step=0.1, value=2, label="Face Ratio", info="Necessary if choosing \'Auto\' or 'Fixed Face Propotion' Mode") threshold = gr.Slider(1, 5, step=0.1, value=1.5, label="Threshold", info="Necessary if choosing \'Auto\' Mode") run_btn = gr.Button(variant="primary") with gr.Row(): examples_data = [["examples/Eda.png"],["examples/Chtholly.png"],["examples/Fairies.png"]] examples = gr.Examples(examples=examples_data, inputs=input_img) run_btn.click(run, [input_img, crop_mode, tgt_width, tgt_height, face_ratio, threshold], [output_img]) app.launch()