Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""MWP_Solver_-_Transformer_with_Multi-head_Attention_Block (1).ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1Tn_j0k8EJ7ny_h7Pjm0stJhNMG4si_y_ | |
""" | |
# ! pip install -q gradio | |
import pandas as pd | |
import re | |
import os | |
import time | |
import random | |
import numpy as np | |
os.system("pip install tensorflow") | |
os.system("pip install scikit-learn") | |
os.system("pip install spacy") | |
os.system("pip install nltk") | |
os.system("spacy download en_core_web_sm") | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
import matplotlib.ticker as ticker | |
from sklearn.model_selection import train_test_split | |
import pickle | |
import spacy | |
from nltk.translate.bleu_score import corpus_bleu | |
import gradio as gr | |
os.system("wget -nc 'https://docs.google.com/uc?export=download&id=1Y8Ee4lUs30BAfFtL3d3VjwChmbDG7O6H' -O data_final.pkl") | |
os.system('''wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a" -O checkpoints.zip && rm -rf /tmp/cookies.txt''') | |
os.system("unzip -n './checkpoints.zip' -d './'") | |
nlp = spacy.load("en_core_web_sm") | |
tf.__version__ | |
with open('data_final.pkl', 'rb') as f: | |
df = pickle.load(f) | |
df.shape | |
df.head() | |
input_exps = list(df['Question'].values) | |
def convert_eqn(eqn): | |
''' | |
Add a space between every character in the equation string. | |
Eg: 'x = 23 + 88' becomes 'x = 2 3 + 8 8' | |
''' | |
elements = list(eqn) | |
return ' '.join(elements) | |
target_exps = list(df['Equation'].apply(lambda x: convert_eqn(x)).values) | |
# Input: Word problem | |
input_exps[:5] | |
# Target: Equation | |
target_exps[:5] | |
len(pd.Series(input_exps)), len(pd.Series(input_exps).unique()) | |
len(pd.Series(target_exps)), len(pd.Series(target_exps).unique()) | |
def preprocess_input(sentence): | |
''' | |
For the word problem, convert everything to lowercase, add spaces around all | |
punctuations and digits, and remove any extra spaces. | |
''' | |
sentence = sentence.lower().strip() | |
sentence = re.sub(r"([?.!,’])", r" \1 ", sentence) | |
sentence = re.sub(r"([0-9])", r" \1 ", sentence) | |
sentence = re.sub(r'[" "]+', " ", sentence) | |
sentence = sentence.rstrip().strip() | |
return sentence | |
def preprocess_target(sentence): | |
''' | |
For the equation, convert it to lowercase and remove extra spaces | |
''' | |
sentence = sentence.lower().strip() | |
return sentence | |
preprocessed_input_exps = list(map(preprocess_input, input_exps)) | |
preprocessed_target_exps = list(map(preprocess_target, target_exps)) | |
preprocessed_input_exps[:5] | |
preprocessed_target_exps[:5] | |
def tokenize(lang): | |
''' | |
Tokenize the given list of strings and return the tokenized output | |
along with the fitted tokenizer. | |
''' | |
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='') | |
lang_tokenizer.fit_on_texts(lang) | |
tensor = lang_tokenizer.texts_to_sequences(lang) | |
return tensor, lang_tokenizer | |
input_tensor, inp_lang_tokenizer = tokenize(preprocessed_input_exps) | |
len(inp_lang_tokenizer.word_index) | |
target_tensor, targ_lang_tokenizer = tokenize(preprocessed_target_exps) | |
old_len = len(targ_lang_tokenizer.word_index) | |
def append_start_end(x,last_int): | |
''' | |
Add integers for start and end tokens for input/target exps | |
''' | |
l = [] | |
l.append(last_int+1) | |
l.extend(x) | |
l.append(last_int+2) | |
return l | |
input_tensor_list = [append_start_end(i,len(inp_lang_tokenizer.word_index)) for i in input_tensor] | |
target_tensor_list = [append_start_end(i,len(targ_lang_tokenizer.word_index)) for i in target_tensor] | |
# Pad all sequences such that they are of equal length | |
input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor_list, padding='post') | |
target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor_list, padding='post') | |
input_tensor | |
target_tensor | |
# Here we are increasing the vocabulary size of the target, by adding a | |
# few extra vocabulary words (which will not actually be used) as otherwise the | |
# small vocab size causes issues downstream in the network. | |
keys = [str(i) for i in range(10,51)] | |
for i,k in enumerate(keys): | |
targ_lang_tokenizer.word_index[k]=len(targ_lang_tokenizer.word_index)+i+4 | |
len(targ_lang_tokenizer.word_index) | |
# Creating training and validation sets | |
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, | |
target_tensor, | |
test_size=0.05, | |
random_state=42) | |
len(input_tensor_train) | |
len(input_tensor_val) | |
BUFFER_SIZE = len(input_tensor_train) | |
BATCH_SIZE = 64 | |
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE | |
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE) | |
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) | |
num_layers = 4 | |
d_model = 128 | |
dff = 512 | |
num_heads = 8 | |
input_vocab_size = len(inp_lang_tokenizer.word_index)+3 | |
target_vocab_size = len(targ_lang_tokenizer.word_index)+3 | |
dropout_rate = 0.0 | |
example_input_batch, example_target_batch = next(iter(dataset)) | |
example_input_batch.shape, example_target_batch.shape | |
# We provide positional information about the data to the model, | |
# otherwise each sentence will be treated as Bag of Words | |
def get_angles(pos, i, d_model): | |
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) | |
return pos * angle_rates | |
def positional_encoding(position, d_model): | |
angle_rads = get_angles(np.arange(position)[:, np.newaxis], | |
np.arange(d_model)[np.newaxis, :], | |
d_model) | |
# apply sin to even indices in the array; 2i | |
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) | |
# apply cos to odd indices in the array; 2i+1 | |
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) | |
pos_encoding = angle_rads[np.newaxis, ...] | |
return tf.cast(pos_encoding, dtype=tf.float32) | |
# mask all elements are that not words (padding) so that it is not treated as input | |
def create_padding_mask(seq): | |
seq = tf.cast(tf.math.equal(seq, 0), tf.float32) | |
# add extra dimensions to add the padding | |
# to the attention logits. | |
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) | |
def create_look_ahead_mask(size): | |
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) | |
return mask | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
def scaled_dot_product_attention(q, k, v, mask): | |
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) | |
# scale matmul_qk | |
dk = tf.cast(tf.shape(k)[-1], tf.float32) | |
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) | |
# add the mask to the scaled tensor. | |
if mask is not None: | |
scaled_attention_logits += (mask * -1e9) | |
# softmax is normalized on the last axis (seq_len_k) so that the scores | |
# add up to 1. | |
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k) | |
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) | |
return output, attention_weights | |
class MultiHeadAttention(tf.keras.layers.Layer): | |
def __init__(self, d_model, num_heads): | |
super(MultiHeadAttention, self).__init__() | |
self.num_heads = num_heads | |
self.d_model = d_model | |
assert d_model % self.num_heads == 0 | |
self.depth = d_model // self.num_heads | |
self.wq = tf.keras.layers.Dense(d_model) | |
self.wk = tf.keras.layers.Dense(d_model) | |
self.wv = tf.keras.layers.Dense(d_model) | |
self.dense = tf.keras.layers.Dense(d_model) | |
def split_heads(self, x, batch_size): | |
"""Split the last dimension into (num_heads, depth). | |
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth) | |
""" | |
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) | |
return tf.transpose(x, perm=[0, 2, 1, 3]) | |
def call(self, v, k, q, mask): | |
batch_size = tf.shape(q)[0] | |
q = self.wq(q) # (batch_size, seq_len, d_model) | |
k = self.wk(k) # (batch_size, seq_len, d_model) | |
v = self.wv(v) # (batch_size, seq_len, d_model) | |
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth) | |
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth) | |
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth) | |
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth) | |
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k) | |
scaled_attention, attention_weights = scaled_dot_product_attention( | |
q, k, v, mask) | |
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth) | |
concat_attention = tf.reshape(scaled_attention, | |
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model) | |
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) | |
return output, attention_weights | |
def point_wise_feed_forward_network(d_model, dff): | |
return tf.keras.Sequential([ | |
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff) | |
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model) | |
]) | |
class EncoderLayer(tf.keras.layers.Layer): | |
def __init__(self, d_model, num_heads, dff, rate=0.1): | |
super(EncoderLayer, self).__init__() | |
self.mha = MultiHeadAttention(d_model, num_heads) | |
self.ffn = point_wise_feed_forward_network(d_model, dff) | |
# normalize data per feature instead of batch | |
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) | |
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) | |
self.dropout1 = tf.keras.layers.Dropout(rate) | |
self.dropout2 = tf.keras.layers.Dropout(rate) | |
def call(self, x, training, mask): | |
# Multi-head attention layer | |
attn_output, _ = self.mha(x, x, x, mask) | |
attn_output = self.dropout1(attn_output, training=training) | |
# add residual connection to avoid vanishing gradient problem | |
out1 = self.layernorm1(x + attn_output) | |
# Feedforward layer | |
ffn_output = self.ffn(out1) | |
ffn_output = self.dropout2(ffn_output, training=training) | |
# add residual connection to avoid vanishing gradient problem | |
out2 = self.layernorm2(out1 + ffn_output) | |
return out2 | |
class Encoder(tf.keras.layers.Layer): | |
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, | |
maximum_position_encoding, rate=0.1): | |
super(Encoder, self).__init__() | |
self.d_model = d_model | |
self.num_layers = num_layers | |
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) | |
self.pos_encoding = positional_encoding(maximum_position_encoding, | |
self.d_model) | |
# Create encoder layers (count: num_layers) | |
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) | |
for _ in range(num_layers)] | |
self.dropout = tf.keras.layers.Dropout(rate) | |
def call(self, x, training, mask): | |
seq_len = tf.shape(x)[1] | |
# adding embedding and position encoding. | |
x = self.embedding(x) | |
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) | |
x += self.pos_encoding[:, :seq_len, :] | |
x = self.dropout(x, training=training) | |
for i in range(self.num_layers): | |
x = self.enc_layers[i](x, training, mask) | |
return x | |
class DecoderLayer(tf.keras.layers.Layer): | |
def __init__(self, d_model, num_heads, dff, rate=0.1): | |
super(DecoderLayer, self).__init__() | |
self.mha1 = MultiHeadAttention(d_model, num_heads) | |
self.mha2 = MultiHeadAttention(d_model, num_heads) | |
self.ffn = point_wise_feed_forward_network(d_model, dff) | |
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) | |
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) | |
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) | |
self.dropout1 = tf.keras.layers.Dropout(rate) | |
self.dropout2 = tf.keras.layers.Dropout(rate) | |
self.dropout3 = tf.keras.layers.Dropout(rate) | |
def call(self, x, enc_output, training, | |
look_ahead_mask, padding_mask): | |
# Masked multihead attention layer (padding + look-ahead) | |
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) | |
attn1 = self.dropout1(attn1, training=training) | |
# again add residual connection | |
out1 = self.layernorm1(attn1 + x) | |
# Masked multihead attention layer (only padding) | |
# with input from encoder as Key and Value, and input from previous layer as Query | |
attn2, attn_weights_block2 = self.mha2( | |
enc_output, enc_output, out1, padding_mask) | |
attn2 = self.dropout2(attn2, training=training) | |
# again add residual connection | |
out2 = self.layernorm2(attn2 + out1) | |
# Feedforward layer | |
ffn_output = self.ffn(out2) | |
ffn_output = self.dropout3(ffn_output, training=training) | |
# again add residual connection | |
out3 = self.layernorm3(ffn_output + out2) | |
return out3, attn_weights_block1, attn_weights_block2 | |
class Decoder(tf.keras.layers.Layer): | |
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, | |
maximum_position_encoding, rate=0.1): | |
super(Decoder, self).__init__() | |
self.d_model = d_model | |
self.num_layers = num_layers | |
self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) | |
self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) | |
# Create decoder layers (count: num_layers) | |
self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) | |
for _ in range(num_layers)] | |
self.dropout = tf.keras.layers.Dropout(rate) | |
def call(self, x, enc_output, training, | |
look_ahead_mask, padding_mask): | |
seq_len = tf.shape(x)[1] | |
attention_weights = {} | |
x = self.embedding(x) # (batch_size, target_seq_len, d_model) | |
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) | |
x += self.pos_encoding[:,:seq_len,:] | |
x = self.dropout(x, training=training) | |
for i in range(self.num_layers): | |
x, block1, block2 = self.dec_layers[i](x, enc_output, training, | |
look_ahead_mask, padding_mask) | |
# store attenion weights, they can be used to visualize while translating | |
attention_weights['decoder_layer{}_block1'.format(i+1)] = block1 | |
attention_weights['decoder_layer{}_block2'.format(i+1)] = block2 | |
return x, attention_weights | |
class Transformer(tf.keras.Model): | |
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, | |
target_vocab_size, pe_input, pe_target, rate=0.1): | |
super(Transformer, self).__init__() | |
self.encoder = Encoder(num_layers, d_model, num_heads, dff, | |
input_vocab_size, pe_input, rate) | |
self.decoder = Decoder(num_layers, d_model, num_heads, dff, | |
target_vocab_size, pe_target, rate) | |
self.final_layer = tf.keras.layers.Dense(target_vocab_size) | |
def call(self, inp, tar, training, enc_padding_mask, | |
look_ahead_mask, dec_padding_mask): | |
# Pass the input to the encoder | |
enc_output = self.encoder(inp, training, enc_padding_mask) | |
# Pass the encoder output to the decoder | |
dec_output, attention_weights = self.decoder( | |
tar, enc_output, training, look_ahead_mask, dec_padding_mask) | |
# Pass the decoder output to the last linear layer | |
final_output = self.final_layer(dec_output) | |
return final_output, attention_weights | |
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): | |
def __init__(self, d_model, warmup_steps=4000): | |
super(CustomSchedule, self).__init__() | |
self.d_model = d_model | |
self.d_model = tf.cast(self.d_model, tf.float32) | |
self.warmup_steps = warmup_steps | |
def __call__(self, step): | |
arg1 = tf.math.rsqrt(step) | |
arg2 = step * (self.warmup_steps ** -1.5) | |
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) | |
learning_rate = CustomSchedule(d_model) | |
# Adam optimizer with a custom learning rate | |
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, | |
epsilon=1e-9) | |
loss_object = tf.keras.losses.SparseCategoricalCrossentropy( | |
from_logits=True, reduction='none') | |
def loss_function(real, pred): | |
# Apply a mask to paddings (0) | |
mask = tf.math.logical_not(tf.math.equal(real, 0)) | |
loss_ = loss_object(real, pred) | |
mask = tf.cast(mask, dtype=loss_.dtype) | |
loss_ *= mask | |
return tf.reduce_mean(loss_) | |
train_loss = tf.keras.metrics.Mean(name='train_loss') | |
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy( | |
name='train_accuracy') | |
transformer = Transformer(num_layers, d_model, num_heads, dff, | |
input_vocab_size, target_vocab_size, | |
pe_input=input_vocab_size, | |
pe_target=target_vocab_size, | |
rate=dropout_rate) | |
def create_masks(inp, tar): | |
# Encoder padding mask | |
enc_padding_mask = create_padding_mask(inp) | |
# Decoder padding mask | |
dec_padding_mask = create_padding_mask(inp) | |
# Look ahead mask (for hiding the rest of the sequence in the 1st decoder attention layer) | |
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) | |
dec_target_padding_mask = create_padding_mask(tar) | |
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) | |
return enc_padding_mask, combined_mask, dec_padding_mask | |
# drive_root = '/gdrive/My Drive/' | |
drive_root = './' | |
checkpoint_dir = os.path.join(drive_root, "checkpoints") | |
checkpoint_dir = os.path.join(checkpoint_dir, "training_checkpoints/moops_transfomer") | |
print("Checkpoints directory is", checkpoint_dir) | |
if os.path.exists(checkpoint_dir): | |
print("Checkpoints folder already exists") | |
else: | |
print("Creating a checkpoints directory") | |
os.makedirs(checkpoint_dir) | |
checkpoint = tf.train.Checkpoint(transformer=transformer, | |
optimizer=optimizer) | |
ckpt_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5) | |
latest = ckpt_manager.latest_checkpoint | |
latest | |
if latest: | |
epoch_num = int(latest.split('/')[-1].split('-')[-1]) | |
checkpoint.restore(latest) | |
print ('Latest checkpoint restored!!') | |
else: | |
epoch_num = 0 | |
epoch_num | |
# EPOCHS = 17 | |
# def train_step(inp, tar): | |
# tar_inp = tar[:, :-1] | |
# tar_real = tar[:, 1:] | |
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp) | |
# with tf.GradientTape() as tape: | |
# predictions, _ = transformer(inp, tar_inp, | |
# True, | |
# enc_padding_mask, | |
# combined_mask, | |
# dec_padding_mask) | |
# loss = loss_function(tar_real, predictions) | |
# gradients = tape.gradient(loss, transformer.trainable_variables) | |
# optimizer.apply_gradients(zip(gradients, transformer.trainable_variables)) | |
# train_loss(loss) | |
# train_accuracy(tar_real, predictions) | |
# for epoch in range(epoch_num, EPOCHS): | |
# start = time.time() | |
# train_loss.reset_states() | |
# train_accuracy.reset_states() | |
# # inp -> question, tar -> equation | |
# for (batch, (inp, tar)) in enumerate(dataset): | |
# train_step(inp, tar) | |
# if batch % 50 == 0: | |
# print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format( | |
# epoch + 1, batch, train_loss.result(), train_accuracy.result())) | |
# ckpt_save_path = ckpt_manager.save() | |
# print ('Saving checkpoint for epoch {} at {}'.format(epoch+1, | |
# ckpt_save_path)) | |
# print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1, | |
# train_loss.result(), | |
# train_accuracy.result())) | |
# print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start)) | |
def evaluate(inp_sentence): | |
start_token = [len(inp_lang_tokenizer.word_index)+1] | |
end_token = [len(inp_lang_tokenizer.word_index)+2] | |
# inp sentence is the word problem, hence adding the start and end token | |
inp_sentence = start_token + [inp_lang_tokenizer.word_index.get(i, inp_lang_tokenizer.word_index['john']) for i in preprocess_input(inp_sentence).split(' ')] + end_token | |
encoder_input = tf.expand_dims(inp_sentence, 0) | |
# start with equation's start token | |
decoder_input = [old_len+1] | |
output = tf.expand_dims(decoder_input, 0) | |
for i in range(MAX_LENGTH): | |
enc_padding_mask, combined_mask, dec_padding_mask = create_masks( | |
encoder_input, output) | |
predictions, attention_weights = transformer(encoder_input, | |
output, | |
False, | |
enc_padding_mask, | |
combined_mask, | |
dec_padding_mask) | |
# select the last word from the seq_len dimension | |
predictions = predictions[: ,-1:, :] | |
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) | |
# return the result if the predicted_id is equal to the end token | |
if predicted_id == old_len+2: | |
return tf.squeeze(output, axis=0), attention_weights | |
# concatentate the predicted_id to the output which is given to the decoder | |
# as its input. | |
output = tf.concat([output, predicted_id], axis=-1) | |
return tf.squeeze(output, axis=0), attention_weights | |
# def plot_attention_weights(attention, sentence, result, layer): | |
# fig = plt.figure(figsize=(16, 8)) | |
# sentence = preprocess_input(sentence) | |
# attention = tf.squeeze(attention[layer], axis=0) | |
# for head in range(attention.shape[0]): | |
# ax = fig.add_subplot(2, 4, head+1) | |
# # plot the attention weights | |
# ax.matshow(attention[head][:-1, :], cmap='viridis') | |
# fontdict = {'fontsize': 10} | |
# ax.set_xticks(range(len(sentence.split(' '))+2)) | |
# ax.set_yticks(range(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) | |
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]])+3)) | |
# ax.set_ylim(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) | |
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]]), -0.5) | |
# ax.set_xticklabels( | |
# ['<start>']+sentence.split(' ')+['<end>'], | |
# fontdict=fontdict, rotation=90) | |
# ax.set_yticklabels([targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) | |
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]], | |
# fontdict=fontdict) | |
# ax.set_xlabel('Head {}'.format(head+1)) | |
# plt.tight_layout() | |
# plt.show() | |
MAX_LENGTH = 40 | |
def translate(sentence, plot=''): | |
result, attention_weights = evaluate(sentence) | |
# use the result tokens to convert prediction into a list of characters | |
# (not inclusing padding, start and end tokens) | |
predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,46,47])] | |
# print('Input: {}'.format(sentence)) | |
return ''.join(predicted_sentence) | |
if plot: | |
plot_attention_weights(attention_weights, sentence, result, plot) | |
# def evaluate_results(inp_sentence): | |
# start_token = [len(inp_lang_tokenizer.word_index)+1] | |
# end_token = [len(inp_lang_tokenizer.word_index)+2] | |
# # inp sentence is the word problem, hence adding the start and end token | |
# inp_sentence = start_token + list(inp_sentence.numpy()[0]) + end_token | |
# encoder_input = tf.expand_dims(inp_sentence, 0) | |
# decoder_input = [old_len+1] | |
# output = tf.expand_dims(decoder_input, 0) | |
# for i in range(MAX_LENGTH): | |
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks( | |
# encoder_input, output) | |
# # predictions.shape == (batch_size, seq_len, vocab_size) | |
# predictions, attention_weights = transformer(encoder_input, | |
# output, | |
# False, | |
# enc_padding_mask, | |
# combined_mask, | |
# dec_padding_mask) | |
# # select the last word from the seq_len dimension | |
# predictions = predictions[: ,-1:, :] # (batch_size, 1, vocab_size) | |
# predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32) | |
# # return the result if the predicted_id is equal to the end token | |
# if predicted_id == old_len+2: | |
# return tf.squeeze(output, axis=0), attention_weights | |
# # concatentate the predicted_id to the output which is given to the decoder | |
# # as its input. | |
# output = tf.concat([output, predicted_id], axis=-1) | |
# return tf.squeeze(output, axis=0), attention_weights | |
# dataset_val = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val)).shuffle(BUFFER_SIZE) | |
# dataset_val = dataset_val.batch(1, drop_remainder=True) | |
# y_true = [] | |
# y_pred = [] | |
# acc_cnt = 0 | |
# a = 0 | |
# for (inp_val_batch, target_val_batch) in iter(dataset_val): | |
# a += 1 | |
# if a % 100 == 0: | |
# print(a) | |
# print("Accuracy count: ",acc_cnt) | |
# print('------------------') | |
# target_sentence = '' | |
# for i in target_val_batch.numpy()[0]: | |
# if i not in [0,old_len+1,old_len+2]: | |
# target_sentence += (targ_lang_tokenizer.index_word[i] + ' ') | |
# y_true.append([target_sentence.split(' ')[:-1]]) | |
# result, _ = evaluate_results(inp_val_batch) | |
# predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2])] | |
# y_pred.append(predicted_sentence) | |
# if target_sentence.split(' ')[:-1] == predicted_sentence: | |
# acc_cnt += 1 | |
# len(y_true), len(y_pred) | |
# print('Corpus BLEU score of the model: ', corpus_bleu(y_true, y_pred)) | |
# print('Accuracy of the model: ', acc_cnt/len(input_tensor_val)) | |
check_str = ' '.join([inp_lang_tokenizer.index_word[i] for i in input_tensor_val[242] if i not in [0, | |
len(inp_lang_tokenizer.word_index)+1, | |
len(inp_lang_tokenizer.word_index)+2]]) | |
check_str | |
translate(check_str) | |
#'victor had some car . john took 3 0 from him . now victor has 6 8 car . how many car victor had originally ?' | |
translate('Nafis had 31 raspberry . He slice each raspberry into 19 slices . How many raspberry slices did Denise make?') | |
interface = gr.Interface( | |
fn = translate, | |
inputs = gr.inputs.Textbox(lines = 2), | |
outputs = 'text', | |
examples = [ | |
['Rachel bought two coloring books. One had 23 pictures and the other had 32. After one week she had colored 19 of the pictures. How many pictures does she still have to color?'], | |
['Denise had 31 raspberries. He slices each raspberry into 19 slices. How many raspberry slices did Denise make?'], | |
['A painter needed to paint 12 rooms in a building. Each room takes 7 hours to paint. If he already painted 5 rooms, how much longer will he take to paint the rest?'], | |
['Jerry had 135 pens. John took 19 pens from him. How many pens Jerry have left?'], | |
['Donald had some apples. Hillary took 20 apples from him. Now Donald has 100 apples. How many apples Donald had before?'] | |
], | |
title = 'Mathbot', | |
description = 'Enter a simple math word problem and our AI will try to predict an expression to solve it. Mathbot occasionally makes mistakes. Feel free to press "flag" if you encounter such a scenario.', | |
) | |
interface.launch() |