import torch from torch import nn from transformers import AutoModel, AutoTokenizer import gradio as gr device = torch.device("cpu") class RaceClassifier(nn.Module): def __init__(self, n_classes): super(RaceClassifier, self).__init__() self.bert = AutoModel.from_pretrained("vinai/bertweet-base") self.drop = nn.Dropout(p=0.3) # can be changed in future self.out = nn.Linear(self.bert.config.hidden_size, n_classes) # linear layer for the output with the number of classes def forward(self, input_ids, attention_mask): bert_output = self.bert( input_ids=input_ids, attention_mask=attention_mask ) last_hidden_state = bert_output[0] pooled_output = last_hidden_state[:, 0] output = self.drop(pooled_output) return self.out(output) labels = { 0: "African American", 1: "Asian", 2: "Latin", 3: "White" } model_race = RaceClassifier(n_classes=4) model_race.to(device) model_race.load_state_dict(torch.load('best_model_race.pt'), map_location=torch.device('cpu')) def predict(text): sentences = [ text ] tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", normalization=True) encoded_sentences = tokenizer( sentences, padding=True, truncation=True, return_tensors='pt', max_length=128, ) input_ids = encoded_sentences["input_ids"].to(device) attention_mask = encoded_sentences["attention_mask"].to(device) model_race.eval() with torch.no_grad(): outputs = model_race(input_ids, attention_mask) probs = torch.nn.functional.softmax(outputs, dim=1) predictions = torch.argmax(outputs, dim=1) predictions = predictions.cpu().numpy() output_string = "" for i, prob in enumerate(probs[0]): print(f"{labels[i]}: %{round(prob.item() * 100, 2)}") output_string += f"{labels[i]}: %{round(prob.item() * 100, 2)}\n" print(labels[predictions[0]]) output_string += f"Predicted as: {labels[predictions[0]]}" return output_string demo = gr.Interface( fn=predict, inputs=["text"], outputs=["text"], ) demo.launch()