|
from __future__ import annotations |
|
|
|
import asyncio |
|
import copy |
|
import sys |
|
import time |
|
from collections import deque |
|
from typing import Any, Deque, Dict, List, Tuple |
|
|
|
import fastapi |
|
|
|
from gradio.data_classes import Estimation, PredictBody, Progress, ProgressUnit |
|
from gradio.helpers import TrackedIterable |
|
from gradio.utils import AsyncRequest, run_coro_in_background, set_task_name |
|
|
|
|
|
class Event: |
|
def __init__( |
|
self, |
|
websocket: fastapi.WebSocket, |
|
session_hash: str, |
|
fn_index: int, |
|
): |
|
self.websocket = websocket |
|
self.session_hash: str = session_hash |
|
self.fn_index: int = fn_index |
|
self._id = f"{self.session_hash}_{self.fn_index}" |
|
self.data: PredictBody | None = None |
|
self.lost_connection_time: float | None = None |
|
self.token: str | None = None |
|
self.progress: Progress | None = None |
|
self.progress_pending: bool = False |
|
|
|
async def disconnect(self, code: int = 1000): |
|
await self.websocket.close(code=code) |
|
|
|
|
|
class Queue: |
|
def __init__( |
|
self, |
|
live_updates: bool, |
|
concurrency_count: int, |
|
update_intervals: float, |
|
max_size: int | None, |
|
blocks_dependencies: List, |
|
): |
|
self.event_queue: Deque[Event] = deque() |
|
self.events_pending_reconnection = [] |
|
self.stopped = False |
|
self.max_thread_count = concurrency_count |
|
self.update_intervals = update_intervals |
|
self.active_jobs: List[None | List[Event]] = [None] * concurrency_count |
|
self.delete_lock = asyncio.Lock() |
|
self.server_path = None |
|
self.duration_history_total = 0 |
|
self.duration_history_count = 0 |
|
self.avg_process_time = 0 |
|
self.avg_concurrent_process_time = None |
|
self.queue_duration = 1 |
|
self.live_updates = live_updates |
|
self.sleep_when_free = 0.05 |
|
self.progress_update_sleep_when_free = 0.1 |
|
self.max_size = max_size |
|
self.blocks_dependencies = blocks_dependencies |
|
self.access_token = "" |
|
|
|
async def start(self, progress_tracking=False): |
|
run_coro_in_background(self.start_processing) |
|
if progress_tracking: |
|
run_coro_in_background(self.start_progress_tracking) |
|
if not self.live_updates: |
|
run_coro_in_background(self.notify_clients) |
|
|
|
def close(self): |
|
self.stopped = True |
|
|
|
def resume(self): |
|
self.stopped = False |
|
|
|
def set_url(self, url: str): |
|
self.server_path = url |
|
|
|
def set_access_token(self, token: str): |
|
self.access_token = token |
|
|
|
def get_active_worker_count(self) -> int: |
|
count = 0 |
|
for worker in self.active_jobs: |
|
if worker is not None: |
|
count += 1 |
|
return count |
|
|
|
def get_events_in_batch(self) -> Tuple[List[Event] | None, bool]: |
|
if not (self.event_queue): |
|
return None, False |
|
|
|
first_event = self.event_queue.popleft() |
|
events = [first_event] |
|
|
|
event_fn_index = first_event.fn_index |
|
batch = self.blocks_dependencies[event_fn_index]["batch"] |
|
|
|
if batch: |
|
batch_size = self.blocks_dependencies[event_fn_index]["max_batch_size"] |
|
rest_of_batch = [ |
|
event for event in self.event_queue if event.fn_index == event_fn_index |
|
][: batch_size - 1] |
|
events.extend(rest_of_batch) |
|
[self.event_queue.remove(event) for event in rest_of_batch] |
|
|
|
return events, batch |
|
|
|
async def start_processing(self) -> None: |
|
while not self.stopped: |
|
if not self.event_queue: |
|
await asyncio.sleep(self.sleep_when_free) |
|
continue |
|
|
|
if not (None in self.active_jobs): |
|
await asyncio.sleep(self.sleep_when_free) |
|
continue |
|
|
|
async with self.delete_lock: |
|
events, batch = self.get_events_in_batch() |
|
|
|
if events: |
|
self.active_jobs[self.active_jobs.index(None)] = events |
|
task = run_coro_in_background(self.process_events, events, batch) |
|
run_coro_in_background(self.broadcast_live_estimations) |
|
set_task_name(task, events[0].session_hash, events[0].fn_index, batch) |
|
|
|
async def start_progress_tracking(self) -> None: |
|
while not self.stopped: |
|
if not any(self.active_jobs): |
|
await asyncio.sleep(self.progress_update_sleep_when_free) |
|
continue |
|
|
|
for job in self.active_jobs: |
|
if job is None: |
|
continue |
|
for event in job: |
|
if event.progress_pending and event.progress: |
|
event.progress_pending = False |
|
client_awake = await self.send_message( |
|
event, event.progress.dict() |
|
) |
|
if not client_awake: |
|
await self.clean_event(event) |
|
|
|
await asyncio.sleep(self.progress_update_sleep_when_free) |
|
|
|
def set_progress( |
|
self, |
|
event_id: str, |
|
iterables: List[TrackedIterable] | None, |
|
): |
|
if iterables is None: |
|
return |
|
for job in self.active_jobs: |
|
if job is None: |
|
continue |
|
for evt in job: |
|
if evt._id == event_id: |
|
progress_data: List[ProgressUnit] = [] |
|
for iterable in iterables: |
|
progress_unit = ProgressUnit( |
|
index=iterable.index, |
|
length=iterable.length, |
|
unit=iterable.unit, |
|
progress=iterable.progress, |
|
desc=iterable.desc, |
|
) |
|
progress_data.append(progress_unit) |
|
evt.progress = Progress(progress_data=progress_data) |
|
evt.progress_pending = True |
|
|
|
def push(self, event: Event) -> int | None: |
|
""" |
|
Add event to queue, or return None if Queue is full |
|
Parameters: |
|
event: Event to add to Queue |
|
Returns: |
|
rank of submitted Event |
|
""" |
|
queue_len = len(self.event_queue) |
|
if self.max_size is not None and queue_len >= self.max_size: |
|
return None |
|
self.event_queue.append(event) |
|
return queue_len |
|
|
|
async def clean_event(self, event: Event) -> None: |
|
if event in self.event_queue: |
|
async with self.delete_lock: |
|
self.event_queue.remove(event) |
|
|
|
async def broadcast_live_estimations(self) -> None: |
|
""" |
|
Runs 2 functions sequentially instead of concurrently. Otherwise dced clients are tried to get deleted twice. |
|
""" |
|
if self.live_updates: |
|
await self.broadcast_estimations() |
|
|
|
async def gather_event_data(self, event: Event) -> bool: |
|
""" |
|
Gather data for the event |
|
|
|
Parameters: |
|
event: |
|
""" |
|
if not event.data: |
|
client_awake = await self.send_message(event, {"msg": "send_data"}) |
|
if not client_awake: |
|
return False |
|
event.data = await self.get_message(event) |
|
return True |
|
|
|
async def notify_clients(self) -> None: |
|
""" |
|
Notify clients about events statuses in the queue periodically. |
|
""" |
|
while not self.stopped: |
|
await asyncio.sleep(self.update_intervals) |
|
if self.event_queue: |
|
await self.broadcast_estimations() |
|
|
|
async def broadcast_estimations(self) -> None: |
|
estimation = self.get_estimation() |
|
|
|
await asyncio.gather( |
|
*[ |
|
self.send_estimation(event, estimation, rank) |
|
for rank, event in enumerate(self.event_queue) |
|
] |
|
) |
|
|
|
async def send_estimation( |
|
self, event: Event, estimation: Estimation, rank: int |
|
) -> Estimation: |
|
""" |
|
Send estimation about ETA to the client. |
|
|
|
Parameters: |
|
event: |
|
estimation: |
|
rank: |
|
""" |
|
estimation.rank = rank |
|
|
|
if self.avg_concurrent_process_time is not None: |
|
estimation.rank_eta = ( |
|
estimation.rank * self.avg_concurrent_process_time |
|
+ self.avg_process_time |
|
) |
|
if None not in self.active_jobs: |
|
|
|
estimation.rank_eta += self.avg_concurrent_process_time |
|
client_awake = await self.send_message(event, estimation.dict()) |
|
if not client_awake: |
|
await self.clean_event(event) |
|
return estimation |
|
|
|
def update_estimation(self, duration: float) -> None: |
|
""" |
|
Update estimation by last x element's average duration. |
|
|
|
Parameters: |
|
duration: |
|
""" |
|
self.duration_history_total += duration |
|
self.duration_history_count += 1 |
|
self.avg_process_time = ( |
|
self.duration_history_total / self.duration_history_count |
|
) |
|
self.avg_concurrent_process_time = self.avg_process_time / min( |
|
self.max_thread_count, self.duration_history_count |
|
) |
|
self.queue_duration = self.avg_concurrent_process_time * len(self.event_queue) |
|
|
|
def get_estimation(self) -> Estimation: |
|
return Estimation( |
|
queue_size=len(self.event_queue), |
|
avg_event_process_time=self.avg_process_time, |
|
avg_event_concurrent_process_time=self.avg_concurrent_process_time, |
|
queue_eta=self.queue_duration, |
|
) |
|
|
|
def get_request_params(self, websocket: fastapi.WebSocket) -> Dict[str, Any]: |
|
return { |
|
"url": str(websocket.url), |
|
"headers": dict(websocket.headers), |
|
"query_params": dict(websocket.query_params), |
|
"path_params": dict(websocket.path_params), |
|
"client": dict(host=websocket.client.host, port=websocket.client.port), |
|
} |
|
|
|
async def call_prediction(self, events: List[Event], batch: bool): |
|
data = events[0].data |
|
assert data is not None, "No event data" |
|
token = events[0].token |
|
data.event_id = events[0]._id if not batch else None |
|
try: |
|
data.request = self.get_request_params(events[0].websocket) |
|
except ValueError: |
|
pass |
|
|
|
if batch: |
|
data.data = list(zip(*[event.data.data for event in events if event.data])) |
|
data.request = [ |
|
self.get_request_params(event.websocket) |
|
for event in events |
|
if event.data |
|
] |
|
data.batched = True |
|
|
|
response = await AsyncRequest( |
|
method=AsyncRequest.Method.POST, |
|
url=f"{self.server_path}api/predict", |
|
json=dict(data), |
|
headers={"Authorization": f"Bearer {self.access_token}"}, |
|
cookies={"access-token": token} if token is not None else None, |
|
) |
|
return response |
|
|
|
async def process_events(self, events: List[Event], batch: bool) -> None: |
|
awake_events: List[Event] = [] |
|
try: |
|
for event in events: |
|
client_awake = await self.gather_event_data(event) |
|
if client_awake: |
|
client_awake = await self.send_message( |
|
event, {"msg": "process_starts"} |
|
) |
|
if client_awake: |
|
awake_events.append(event) |
|
if not awake_events: |
|
return |
|
begin_time = time.time() |
|
response = await self.call_prediction(awake_events, batch) |
|
if response.has_exception: |
|
for event in awake_events: |
|
await self.send_message( |
|
event, |
|
{ |
|
"msg": "process_completed", |
|
"output": {"error": str(response.exception)}, |
|
"success": False, |
|
}, |
|
) |
|
elif response.json.get("is_generating", False): |
|
old_response = response |
|
while response.json.get("is_generating", False): |
|
|
|
|
|
|
|
if sys.version_info < (3, 8): |
|
is_alive = await self.send_message(event, {"msg": "alive?"}) |
|
if not is_alive: |
|
return |
|
old_response = response |
|
open_ws = [] |
|
for event in awake_events: |
|
open = await self.send_message( |
|
event, |
|
{ |
|
"msg": "process_generating", |
|
"output": old_response.json, |
|
"success": old_response.status == 200, |
|
}, |
|
) |
|
open_ws.append(open) |
|
awake_events = [ |
|
e for e, is_open in zip(awake_events, open_ws) if is_open |
|
] |
|
if not awake_events: |
|
return |
|
response = await self.call_prediction(awake_events, batch) |
|
for event in awake_events: |
|
if response.status != 200: |
|
relevant_response = response |
|
else: |
|
relevant_response = old_response |
|
|
|
await self.send_message( |
|
event, |
|
{ |
|
"msg": "process_completed", |
|
"output": relevant_response.json, |
|
"success": relevant_response.status == 200, |
|
}, |
|
) |
|
else: |
|
output = copy.deepcopy(response.json) |
|
for e, event in enumerate(awake_events): |
|
if batch and "data" in output: |
|
output["data"] = list(zip(*response.json.get("data")))[e] |
|
await self.send_message( |
|
event, |
|
{ |
|
"msg": "process_completed", |
|
"output": output, |
|
"success": response.status == 200, |
|
}, |
|
) |
|
end_time = time.time() |
|
if response.status == 200: |
|
self.update_estimation(end_time - begin_time) |
|
finally: |
|
for event in awake_events: |
|
try: |
|
await event.disconnect() |
|
except Exception: |
|
pass |
|
self.active_jobs[self.active_jobs.index(events)] = None |
|
for event in awake_events: |
|
await self.clean_event(event) |
|
|
|
|
|
|
|
|
|
await self.reset_iterators(event.session_hash, event.fn_index) |
|
|
|
async def send_message(self, event, data: Dict) -> bool: |
|
try: |
|
await event.websocket.send_json(data=data) |
|
return True |
|
except: |
|
await self.clean_event(event) |
|
return False |
|
|
|
async def get_message(self, event) -> PredictBody | None: |
|
try: |
|
data = await event.websocket.receive_json() |
|
return PredictBody(**data) |
|
except: |
|
await self.clean_event(event) |
|
return None |
|
|
|
async def reset_iterators(self, session_hash: str, fn_index: int): |
|
await AsyncRequest( |
|
method=AsyncRequest.Method.POST, |
|
url=f"{self.server_path}reset", |
|
json={ |
|
"session_hash": session_hash, |
|
"fn_index": fn_index, |
|
}, |
|
) |
|
|