Chakshu123
commited on
Commit
•
d97c34e
1
Parent(s):
7730ebf
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ sys.path.insert(0, 'gradio-modified')
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
-
|
8 |
from PIL import Image
|
9 |
|
10 |
import torch
|
@@ -27,7 +27,123 @@ print('Use device:', device)
|
|
27 |
|
28 |
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
def resize_original(img: Image.Image):
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
+
import torch.nn as nn
|
8 |
from PIL import Image
|
9 |
|
10 |
import torch
|
|
|
27 |
|
28 |
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')
|
29 |
|
30 |
+
class BaseColor(nn.Module):
|
31 |
+
def __init__(self):
|
32 |
+
super(BaseColor, self).__init__()
|
33 |
+
|
34 |
+
self.l_cent = 50.
|
35 |
+
self.l_norm = 100.
|
36 |
+
self.ab_norm = 110.
|
37 |
+
|
38 |
+
def normalize_l(self, in_l):
|
39 |
+
return (in_l-self.l_cent)/self.l_norm
|
40 |
+
|
41 |
+
def unnormalize_l(self, in_l):
|
42 |
+
return in_l*self.l_norm + self.l_cent
|
43 |
+
|
44 |
+
def normalize_ab(self, in_ab):
|
45 |
+
return in_ab/self.ab_norm
|
46 |
+
|
47 |
+
def unnormalize_ab(self, in_ab):
|
48 |
+
return in_ab*self.ab_norm
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
class ECCVGenerator(BaseColor):
|
53 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
54 |
+
super(ECCVGenerator, self).__init__()
|
55 |
+
|
56 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
57 |
+
model1+=[nn.ReLU(True),]
|
58 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
59 |
+
model1+=[nn.ReLU(True),]
|
60 |
+
model1+=[norm_layer(64),]
|
61 |
+
|
62 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
63 |
+
model2+=[nn.ReLU(True),]
|
64 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
65 |
+
model2+=[nn.ReLU(True),]
|
66 |
+
model2+=[norm_layer(128),]
|
67 |
+
|
68 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
69 |
+
model3+=[nn.ReLU(True),]
|
70 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
71 |
+
model3+=[nn.ReLU(True),]
|
72 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
73 |
+
model3+=[nn.ReLU(True),]
|
74 |
+
model3+=[norm_layer(256),]
|
75 |
+
|
76 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
77 |
+
model4+=[nn.ReLU(True),]
|
78 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
79 |
+
model4+=[nn.ReLU(True),]
|
80 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
81 |
+
model4+=[nn.ReLU(True),]
|
82 |
+
model4+=[norm_layer(512),]
|
83 |
+
|
84 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
85 |
+
model5+=[nn.ReLU(True),]
|
86 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
87 |
+
model5+=[nn.ReLU(True),]
|
88 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
89 |
+
model5+=[nn.ReLU(True),]
|
90 |
+
model5+=[norm_layer(512),]
|
91 |
+
|
92 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
93 |
+
model6+=[nn.ReLU(True),]
|
94 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
95 |
+
model6+=[nn.ReLU(True),]
|
96 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
97 |
+
model6+=[nn.ReLU(True),]
|
98 |
+
model6+=[norm_layer(512),]
|
99 |
+
|
100 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
101 |
+
model7+=[nn.ReLU(True),]
|
102 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
103 |
+
model7+=[nn.ReLU(True),]
|
104 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
105 |
+
model7+=[nn.ReLU(True),]
|
106 |
+
model7+=[norm_layer(512),]
|
107 |
+
|
108 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
109 |
+
model8+=[nn.ReLU(True),]
|
110 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
111 |
+
model8+=[nn.ReLU(True),]
|
112 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
113 |
+
model8+=[nn.ReLU(True),]
|
114 |
+
|
115 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
116 |
+
|
117 |
+
self.model1 = nn.Sequential(*model1)
|
118 |
+
self.model2 = nn.Sequential(*model2)
|
119 |
+
self.model3 = nn.Sequential(*model3)
|
120 |
+
self.model4 = nn.Sequential(*model4)
|
121 |
+
self.model5 = nn.Sequential(*model5)
|
122 |
+
self.model6 = nn.Sequential(*model6)
|
123 |
+
self.model7 = nn.Sequential(*model7)
|
124 |
+
self.model8 = nn.Sequential(*model8)
|
125 |
+
|
126 |
+
self.softmax = nn.Softmax(dim=1)
|
127 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
128 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
129 |
+
|
130 |
+
def forward(self, input_l):
|
131 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
132 |
+
conv2_2 = self.model2(conv1_2)
|
133 |
+
conv3_3 = self.model3(conv2_2)
|
134 |
+
conv4_3 = self.model4(conv3_3)
|
135 |
+
conv5_3 = self.model5(conv4_3)
|
136 |
+
conv6_3 = self.model6(conv5_3)
|
137 |
+
conv7_3 = self.model7(conv6_3)
|
138 |
+
conv8_3 = self.model8(conv7_3)
|
139 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
140 |
+
|
141 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
142 |
+
|
143 |
+
|
144 |
+
# model_net = torch.load(f'weights/colorizer.pt')
|
145 |
+
model = ECCVGenerator()
|
146 |
+
model_net.load_state_dict(torch.load(f'weights/colorizer.pt'))
|
147 |
|
148 |
|
149 |
def resize_original(img: Image.Image):
|