""" This is the core file in the `gradio` package, and defines the Interface class, including various methods for constructing an interface and then launching it. """ from __future__ import annotations import inspect import json import os import pkgutil import re import warnings import weakref from typing import TYPE_CHECKING, Any, Callable, List, Tuple from markdown_it import MarkdownIt from mdit_py_plugins.dollarmath.index import dollarmath_plugin from mdit_py_plugins.footnote.index import footnote_plugin from gradio import Examples, interpretation, utils from gradio.blocks import Blocks from gradio.components import ( Button, Interpretation, IOComponent, Markdown, State, get_component_instance, ) from gradio.data_classes import InterfaceTypes from gradio.documentation import document, set_documentation_group from gradio.events import Changeable, Streamable from gradio.flagging import CSVLogger, FlaggingCallback, FlagMethod from gradio.layouts import Column, Row, Tab, Tabs from gradio.pipelines import load_from_pipeline set_documentation_group("interface") if TYPE_CHECKING: # Only import for type checking (is False at runtime). from transformers.pipelines.base import Pipeline @document("launch", "load", "from_pipeline", "integrate", "queue") class Interface(Blocks): """ Interface is Gradio's main high-level class, and allows you to create a web-based GUI / demo around a machine learning model (or any Python function) in a few lines of code. You must specify three parameters: (1) the function to create a GUI for (2) the desired input components and (3) the desired output components. Additional parameters can be used to control the appearance and behavior of the demo. Example: import gradio as gr def image_classifier(inp): return {'cat': 0.3, 'dog': 0.7} demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label") demo.launch() Demos: hello_world, hello_world_3, gpt_j Guides: quickstart, key_features, sharing_your_app, interface_state, reactive_interfaces, advanced_interface_features, setting_up_a_gradio_demo_for_maximum_performance """ # stores references to all currently existing Interface instances instances: weakref.WeakSet = weakref.WeakSet() @classmethod def get_instances(cls) -> List[Interface]: """ :return: list of all current instances. """ return list(Interface.instances) @classmethod def load( cls, name: str, src: str | None = None, api_key: str | None = None, alias: str | None = None, **kwargs, ) -> Interface: """ Class method that constructs an Interface from a Hugging Face repo. Can accept model repos (if src is "models") or Space repos (if src is "spaces"). The input and output components are automatically loaded from the repo. Parameters: name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base") src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`) api_key: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x) Returns: a Gradio Interface object for the given model Example: import gradio as gr description = "Story generation with GPT" examples = [["An adventurer is approached by a mysterious stranger in the tavern for a new quest."]] demo = gr.Interface.load("models/EleutherAI/gpt-neo-1.3B", description=description, examples=examples) demo.launch() """ return super().load(name=name, src=src, api_key=api_key, alias=alias, **kwargs) @classmethod def from_pipeline(cls, pipeline: Pipeline, **kwargs) -> Interface: """ Class method that constructs an Interface from a Hugging Face transformers.Pipeline object. The input and output components are automatically determined from the pipeline. Parameters: pipeline: the pipeline object to use. Returns: a Gradio Interface object from the given Pipeline Example: import gradio as gr from transformers import pipeline pipe = pipeline("image-classification") gr.Interface.from_pipeline(pipe).launch() """ interface_info = load_from_pipeline(pipeline) kwargs = dict(interface_info, **kwargs) interface = cls(**kwargs) return interface def __init__( self, fn: Callable, inputs: str | IOComponent | List[str | IOComponent] | None, outputs: str | IOComponent | List[str | IOComponent] | None, examples: List[Any] | List[List[Any]] | str | None = None, cache_examples: bool | None = None, examples_per_page: int = 10, live: bool = False, interpretation: Callable | str | None = None, num_shap: float = 2.0, title: str | None = None, description: str | None = None, article: str | None = None, thumbnail: str | None = None, theme: str = "default", css: str | None = None, allow_flagging: str | None = None, flagging_options: List[str] | None = None, flagging_dir: str = "flagged", flagging_callback: FlaggingCallback = CSVLogger(), analytics_enabled: bool | None = None, batch: bool = False, max_batch_size: int = 4, _api_mode: bool = False, **kwargs, ): """ Parameters: fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. inputs: a single Gradio component, or list of Gradio components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of input components should match the number of parameters in fn. If set to None, then only the output components will be displayed. outputs: a single Gradio component, or list of Gradio components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of output components should match the number of values returned by fn. If set to None, then only the input components will be displayed. examples: sample inputs for the function; if provided, appear below the UI components and can be clicked to populate the interface. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided, but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs. cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False. examples_per_page: If examples are provided, how many to display per page. live: whether the interface should automatically rerun if any of the inputs change. interpretation: function that provides interpretation explaining prediction output. Pass "default" to use simple built-in interpreter, "shap" to use a built-in shapley-based interpreter, or your own custom interpretation function. For more information on the different interpretation methods, see the Advanced Interface Features guide. num_shap: a multiplier that determines how many examples are computed for shap-based interpretation. Increasing this value will increase shap runtime, but improve results. Only applies if interpretation is "shap". title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window. description: a description for the interface; if provided, appears above the input and output components and beneath the title in regular font. Accepts Markdown and HTML content. article: an expanded article explaining the interface; if provided, appears below the input and output components in regular font. Accepts Markdown and HTML content. thumbnail: path or url to image to use as display image when the web demo is shared on social media. theme: Theme to use - right now, only "default" is supported. Can be set with the GRADIO_THEME environment variable. css: custom css or path to custom css file to use with interface. allow_flagging: one of "never", "auto", or "manual". If "never" or "auto", users will not see a button to flag an input and output. If "manual", users will see a button to flag. If "auto", every input the user submits will be automatically flagged (outputs are not flagged). If "manual", both the input and outputs are flagged when the user clicks flag button. This parameter can be set with environmental variable GRADIO_ALLOW_FLAGGING; otherwise defaults to "manual". flagging_options: if provided, allows user to select from the list of options when flagging. Only applies if allow_flagging is "manual". flagging_dir: what to name the directory where flagged data is stored. flagging_callback: An instance of a subclass of FlaggingCallback which will be called when a sample is flagged. By default logs to a local CSV file. analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True. batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component. max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) """ super().__init__( analytics_enabled=analytics_enabled, mode="interface", css=css, title=title or "Gradio", theme=theme, **kwargs, ) if isinstance(fn, list): raise DeprecationWarning( "The `fn` parameter only accepts a single function, support for a list " "of functions has been deprecated. Please use gradio.mix.Parallel " "instead." ) self.interface_type = InterfaceTypes.STANDARD if (inputs is None or inputs == []) and (outputs is None or outputs == []): raise ValueError("Must provide at least one of `inputs` or `outputs`") elif outputs is None or outputs == []: outputs = [] self.interface_type = InterfaceTypes.INPUT_ONLY elif inputs is None or inputs == []: inputs = [] self.interface_type = InterfaceTypes.OUTPUT_ONLY assert isinstance(inputs, (str, list, IOComponent)) assert isinstance(outputs, (str, list, IOComponent)) if not isinstance(inputs, list): inputs = [inputs] if not isinstance(outputs, list): outputs = [outputs] if self.is_space and cache_examples is None: self.cache_examples = True else: self.cache_examples = cache_examples or False state_input_indexes = [ idx for idx, i in enumerate(inputs) if i == "state" or isinstance(i, State) ] state_output_indexes = [ idx for idx, o in enumerate(outputs) if o == "state" or isinstance(o, State) ] if len(state_input_indexes) == 0 and len(state_output_indexes) == 0: pass elif len(state_input_indexes) != 1 or len(state_output_indexes) != 1: raise ValueError( "If using 'state', there must be exactly one state input and one state output." ) else: state_input_index = state_input_indexes[0] state_output_index = state_output_indexes[0] if inputs[state_input_index] == "state": default = utils.get_default_args(fn)[state_input_index] state_variable = State(value=default) # type: ignore else: state_variable = inputs[state_input_index] inputs[state_input_index] = state_variable outputs[state_output_index] = state_variable if cache_examples: warnings.warn( "Cache examples cannot be used with state inputs and outputs." "Setting cache_examples to False." ) self.cache_examples = False self.input_components = [ get_component_instance(i, render=False) for i in inputs ] self.output_components = [ get_component_instance(o, render=False) for o in outputs ] for component in self.input_components + self.output_components: if not (isinstance(component, IOComponent)): raise ValueError( f"{component} is not a valid input/output component for Interface." ) if len(self.input_components) == len(self.output_components): same_components = [ i is o for i, o in zip(self.input_components, self.output_components) ] if all(same_components): self.interface_type = InterfaceTypes.UNIFIED if self.interface_type in [ InterfaceTypes.STANDARD, InterfaceTypes.OUTPUT_ONLY, ]: for o in self.output_components: assert isinstance(o, IOComponent) o.interactive = False # Force output components to be non-interactive if ( interpretation is None or isinstance(interpretation, list) or callable(interpretation) ): self.interpretation = interpretation elif isinstance(interpretation, str): self.interpretation = [ interpretation.lower() for _ in self.input_components ] else: raise ValueError("Invalid value for parameter: interpretation") self.api_mode = _api_mode self.fn = fn self.fn_durations = [0, 0] self.__name__ = getattr(fn, "__name__", "fn") self.live = live self.title = title CLEANER = re.compile("<.*?>") def clean_html(raw_html): cleantext = re.sub(CLEANER, "", raw_html) return cleantext md = ( MarkdownIt( "js-default", { "linkify": True, "typographer": True, "html": True, }, ) .use(dollarmath_plugin) .use(footnote_plugin) .enable("table") ) simple_description = None if description is not None: description = md.render(description) simple_description = clean_html(description) self.simple_description = simple_description self.description = description if article is not None: article = utils.readme_to_html(article) article = md.render(article) self.article = article self.thumbnail = thumbnail self.theme = theme or os.getenv("GRADIO_THEME", "default") if not (self.theme == "default"): warnings.warn("Currently, only the 'default' theme is supported.") self.examples = examples self.num_shap = num_shap self.examples_per_page = examples_per_page self.simple_server = None # For analytics_enabled and allow_flagging: (1) first check for # parameter, (2) check for env variable, (3) default to True/"manual" self.analytics_enabled = ( analytics_enabled if analytics_enabled is not None else os.getenv("GRADIO_ANALYTICS_ENABLED", "True") == "True" ) if allow_flagging is None: allow_flagging = os.getenv("GRADIO_ALLOW_FLAGGING", "manual") if allow_flagging is True: warnings.warn( "The `allow_flagging` parameter in `Interface` now" "takes a string value ('auto', 'manual', or 'never')" ", not a boolean. Setting parameter to: 'manual'." ) self.allow_flagging = "manual" elif allow_flagging == "manual": self.allow_flagging = "manual" elif allow_flagging is False: warnings.warn( "The `allow_flagging` parameter in `Interface` now" "takes a string value ('auto', 'manual', or 'never')" ", not a boolean. Setting parameter to: 'never'." ) self.allow_flagging = "never" elif allow_flagging == "never": self.allow_flagging = "never" elif allow_flagging == "auto": self.allow_flagging = "auto" else: raise ValueError( "Invalid value for `allow_flagging` parameter." "Must be: 'auto', 'manual', or 'never'." ) self.flagging_options = flagging_options self.flagging_callback = flagging_callback self.flagging_dir = flagging_dir self.batch = batch self.max_batch_size = max_batch_size self.save_to = None # Used for selenium tests self.share = None self.share_url = None self.local_url = None self.favicon_path = None if self.analytics_enabled: data = { "mode": self.mode, "fn": fn, "inputs": inputs, "outputs": outputs, "live": live, "ip_address": self.ip_address, "interpretation": interpretation, "allow_flagging": allow_flagging, "custom_css": self.css is not None, "theme": self.theme, "version": (pkgutil.get_data(__name__, "version.txt") or b"") .decode("ascii") .strip(), } utils.initiated_analytics(data) utils.version_check() Interface.instances.add(self) param_names = inspect.getfullargspec(self.fn)[0] for component, param_name in zip(self.input_components, param_names): assert isinstance(component, IOComponent) if component.label is None: component.label = param_name for i, component in enumerate(self.output_components): assert isinstance(component, IOComponent) if component.label is None: if len(self.output_components) == 1: component.label = "output" else: component.label = "output " + str(i) if self.allow_flagging != "never": if ( self.interface_type == InterfaceTypes.UNIFIED or self.allow_flagging == "auto" ): self.flagging_callback.setup(self.input_components, self.flagging_dir) # type: ignore elif self.interface_type == InterfaceTypes.INPUT_ONLY: pass else: self.flagging_callback.setup( self.input_components + self.output_components, self.flagging_dir # type: ignore ) # Render the Gradio UI with self: self.render_title_description() submit_btn, clear_btn, stop_btn, flag_btns = None, None, None, None interpretation_btn, interpretation_set = None, None input_component_column, interpret_component_column = None, None with Row().style(equal_height=False): if self.interface_type in [ InterfaceTypes.STANDARD, InterfaceTypes.INPUT_ONLY, InterfaceTypes.UNIFIED, ]: ( submit_btn, clear_btn, stop_btn, flag_btns, input_component_column, interpret_component_column, interpretation_set, ) = self.render_input_column() if self.interface_type in [ InterfaceTypes.STANDARD, InterfaceTypes.OUTPUT_ONLY, ]: ( submit_btn_out, clear_btn_2_out, stop_btn_2_out, flag_btns_out, interpretation_btn, ) = self.render_output_column(submit_btn) submit_btn = submit_btn or submit_btn_out clear_btn = clear_btn or clear_btn_2_out stop_btn = stop_btn or stop_btn_2_out flag_btns = flag_btns or flag_btns_out assert clear_btn is not None, "Clear button not rendered" self.attach_submit_events(submit_btn, stop_btn) self.attach_clear_events( clear_btn, input_component_column, interpret_component_column ) self.attach_interpretation_events( interpretation_btn, interpretation_set, input_component_column, interpret_component_column, ) self.render_flagging_buttons(flag_btns) self.render_examples() self.render_article() self.config = self.get_config_file() def render_title_description(self) -> None: if self.title: Markdown( "