File size: 22,976 Bytes
45d6af3
 
 
 
b871fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d6af3
 
 
 
 
 
 
 
 
 
 
 
 
b871fd6
45d6af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b871fd6
45d6af3
 
b871fd6
 
45d6af3
 
 
 
 
b871fd6
45d6af3
 
b871fd6
 
45d6af3
1b33af5
b871fd6
a21a9e8
b871fd6
4f4356d
b871fd6
 
 
 
 
4f4356d
b871fd6
 
 
 
4f4356d
b871fd6
 
 
 
 
 
 
 
 
4f4356d
4f0aaef
 
 
 
 
 
 
 
 
 
 
 
 
 
b871fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f4356d
 
 
b871fd6
 
4f4356d
 
b871fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b33af5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226415
b871fd6
3226415
 
b871fd6
3226415
 
 
 
 
b871fd6
3226415
b871fd6
3226415
b871fd6
 
 
3226415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b871fd6
3226415
b871fd6
3226415
b871fd6
 
 
 
 
 
 
3226415
b871fd6
3226415
b871fd6
3226415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b871fd6
3226415
 
 
b871fd6
3226415
b871fd6
3226415
 
 
 
b871fd6
3226415
 
 
b871fd6
 
3226415
 
 
 
b871fd6
3226415
b871fd6
 
 
 
45d6af3
b871fd6
45d6af3
 
 
b871fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226415
b871fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d6af3
 
 
b871fd6
1b33af5
 
 
 
 
 
 
b871fd6
1b33af5
b871fd6
 
 
 
 
 
 
 
 
 
1b33af5
b871fd6
 
 
 
45d6af3
0bbb5ea
45d6af3
 
 
 
 
 
 
 
 
 
1b33af5
 
b871fd6
 
ad4a786
45d6af3
 
b871fd6
 
 
 
 
 
ad4a786
b871fd6
 
ad4a786
b871fd6
 
 
45d6af3
b871fd6
 
 
 
 
 
45d6af3
a0cad87
 
1b33af5
 
 
 
 
 
 
45d6af3
e1d6be0
45d6af3
0f570bc
e1d6be0
45d6af3
54ac992
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import gradio as gr
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO

def is_peptide(smiles):
    """Check if the SMILES represents a peptide by looking for peptide bonds"""
    mol = Chem.MolFromSmiles(smiles)
    if mol is None:
        return False
        
    # Look for peptide bonds: NC(=O) pattern
    peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
    if mol.HasSubstructMatch(peptide_bond_pattern):
        return True
        
    # Look for N-methylated peptide bonds: N(C)C(=O) pattern
    n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
    if mol.HasSubstructMatch(n_methyl_pattern):
        return True
        
    # Look for ester bonds in cyclic depsipeptides: OC(=O) pattern
    ester_bond_pattern = Chem.MolFromSmarts('O[C](=O)')
    if mol.HasSubstructMatch(ester_bond_pattern):
        return True
        
    return False

def remove_nested_branches(smiles):
    """Remove nested branches from SMILES string"""
    result = ''
    depth = 0
    for char in smiles:
        if char == '(':
            depth += 1
        elif char == ')':
            depth -= 1
        elif depth == 0:
            result += char
    return result

def identify_linkage_type(segment):
    """
    Identify the type of linkage between residues
    Returns: tuple (type, is_n_methylated)
    """
    if 'OC(=O)' in segment:
        return ('ester', False)
    elif 'N(C)C(=O)' in segment:
        return ('peptide', True)  # N-methylated peptide bond
    elif 'NC(=O)' in segment:
        return ('peptide', False)  # Regular peptide bond
    return (None, False)
def identify_residue(segment, next_segment=None, prev_segment=None):
    """
    Identify amino acid residues with modifications and special handling for Proline
    Returns: tuple (residue, modifications)
    """
    modifications = []
    
    # Check for modifications in the next segment
    if next_segment:
        if 'N(C)C(=O)' in next_segment:
            modifications.append('N-Me')
        if 'OC(=O)' in next_segment:
            modifications.append('O-linked')

    # Special case for Proline - check for CCCN pattern and its cyclization
    # Proline can appear in several patterns due to its cyclic nature
    if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
        return ('Pro', modifications)
    
    # Check if this segment is part of a Proline ring by looking at context
    if prev_segment and next_segment:
        if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
            combined = prev_segment + segment + next_segment
            if re.search(r'CCCN.*C\(=O\)', combined):
                return ('Pro', modifications)

    # Aromatic amino acids
    if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:  
        return ('Phe', modifications)
    if 'c2ccc(O)cc2' in segment:  
        return ('Tyr', modifications)
    if 'c1c[nH]c2ccccc12' in segment:  
        return ('Trp', modifications)
    if 'c1cnc[nH]1' in segment:  
        return ('His', modifications)
        
    # Branched chain amino acids
    if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:  
        return ('Leu', modifications)
    if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:  
        return ('Leu', modifications)
    if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
        return ('Val', modifications)
    if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:  
        return ('Ile', modifications)
        
    # Small/polar amino acids
    if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
        return ('Ala', modifications)
    if '[C@H](CO)' in segment:
        return ('Ser', modifications)
    if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
        return ('Thr', modifications)
    if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
        return ('Gly', modifications)
        
    # Rest of amino acids remain the same...
    # [Previous code for other amino acids]
    
    return (None, modifications)
def parse_peptide(smiles):
    """
    Parse peptide sequence with enhanced Proline recognition
    """
    # Split on peptide bonds while preserving cycle numbers
    bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
    segments = re.split(bond_pattern, smiles)
    segments = [s for s in segments if s]
    
    sequence = []
    i = 0
    while i < len(segments):
        segment = segments[i]
        next_segment = segments[i+1] if i+1 < len(segments) else None
        prev_segment = segments[i-1] if i > 0 else None
        
        # Skip pure bond patterns
        if re.match(r'.*C\(=O\)$', segment):
            i += 1
            continue
            
        residue, modifications = identify_residue(segment, next_segment, prev_segment)
        if residue:
            # Format residue with modifications
            formatted_residue = residue
            if modifications:
                formatted_residue += f"({','.join(modifications)})"
            sequence.append(formatted_residue)
        
        i += 1
    
    is_cyclic = is_cyclic_peptide(smiles)
    
    # Print debug information
    print("\nDetailed Analysis:")
    print("Segments:", segments)
    print("Found sequence:", sequence)
    
    # Format the final sequence
    if is_cyclic:
        return f"cyclo({'-'.join(sequence)})"
    return '-'.join(sequence)

def is_cyclic_peptide(smiles):
    """
    Determine if SMILES represents a cyclic peptide by checking:
    1. Proper cycle number pairing
    2. Presence of peptide bonds between cycle points
    3. Distinguishing between aromatic rings and peptide cycles
    """
    cycle_info = {}
    
    # Find all cycle numbers and their contexts
    for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
        number = match.group(2)
        pre_context = match.group(1) or ''
        post_context = match.group(3) or ''
        position = match.start(2)
        
        if number not in cycle_info:
            cycle_info[number] = []
        cycle_info[number].append({
            'position': position,
            'pre_context': pre_context,
            'post_context': post_context,
            'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
        })
    
    # Check each cycle
    peptide_cycles = []
    aromatic_cycles = []
    
    for number, occurrences in cycle_info.items():
        if len(occurrences) != 2:  # Must have exactly 2 occurrences
            continue
            
        start, end = occurrences[0]['position'], occurrences[1]['position']
        
        # Get the segment between cycle points
        segment = smiles[start:end+1]
        clean_segment = remove_nested_branches(segment)
        
        # Check if this is an aromatic ring
        is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
        
        # Check if this is a peptide cycle
        has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
        
        if is_aromatic:
            aromatic_cycles.append(number)
        elif has_peptide_bond:
            peptide_cycles.append(number)
    
    return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles

def analyze_single_smiles(smiles):
    """Analyze a single SMILES string"""
    try:
        is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
        sequence = parse_peptide(smiles)
        
        details = {
            #'SMILES': smiles,
            'Sequence': sequence,
            'Is Cyclic': 'Yes' if is_cyclic else 'No',
            #'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
            #'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
        }
        return details
        
    except Exception as e:
        return {
            #'SMILES': smiles,
            'Sequence': f'Error: {str(e)}',
            'Is Cyclic': 'Error',
            #'Peptide Cycles': 'Error',
            #'Aromatic Cycles': 'Error'
        }
"""
def annotate_cyclic_structure(mol, sequence):
    '''Create annotated 2D structure with clear, non-overlapping residue labels'''
    # Generate 2D coordinates
    # Generate 2D coordinates
    AllChem.Compute2DCoords(mol)
    
    # Create drawer with larger size for annotations
    drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)  # Even larger size
    
    # Get residue list and reverse it to match structural representation
    if sequence.startswith('cyclo('):
        residues = sequence[6:-1].split('-')
    else:
        residues = sequence.split('-')
    residues = list(reversed(residues))  # Reverse the sequence
    
    # Draw molecule first to get its bounds
    drawer.drawOptions().addAtomIndices = False
    drawer.DrawMolecule(mol)
    drawer.FinishDrawing()
    
    # Convert to PIL Image
    img = Image.open(BytesIO(drawer.GetDrawingText()))
    draw = ImageDraw.Draw(img)
    
    try:
        # Try to use DejaVuSans as it's commonly available on Linux systems
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
        small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
    except OSError:
        try:
            # Fallback to Arial if available (common on Windows)
            font = ImageFont.truetype("arial.ttf", 60)
            small_font = ImageFont.truetype("arial.ttf", 60)
        except OSError:
            # If no TrueType fonts are available, fall back to default
            print("Warning: TrueType fonts not available, using default font")
            font = ImageFont.load_default()
            small_font = ImageFont.load_default()
    # Get molecule bounds
    conf = mol.GetConformer()
    positions = []
    for i in range(mol.GetNumAtoms()):
        pos = conf.GetAtomPosition(i)
        positions.append((pos.x, pos.y))
    
    x_coords = [p[0] for p in positions]
    y_coords = [p[1] for p in positions]
    min_x, max_x = min(x_coords), max(x_coords)
    min_y, max_y = min(y_coords), max(y_coords)
    
    # Calculate scaling factors
    scale = 150  # Increased scale factor
    center_x = 1000  # Image center
    center_y = 1000
    
    # Add residue labels in a circular arrangement around the structure
    n_residues = len(residues)
    radius = 700  # Distance of labels from center
    
    # Start from the rightmost point (3 o'clock position) and go counterclockwise
    # Offset by -3 positions to align with structure
    offset = 0  # Adjust this value to match the structure alignment
    for i, residue in enumerate(residues):
        # Calculate position in a circle around the structure
        # Start from 0 (3 o'clock) and go counterclockwise
        angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues)
        
        # Calculate label position
        label_x = center_x + radius * np.cos(angle)
        label_y = center_y + radius * np.sin(angle)
        
        # Draw residue label
        text = f"{i+1}. {residue}"
        bbox = draw.textbbox((label_x, label_y), text, font=font)
        padding = 10
        draw.rectangle([bbox[0]-padding, bbox[1]-padding, 
                       bbox[2]+padding, bbox[3]+padding], 
                      fill='white', outline='white')
        draw.text((label_x, label_y), text, 
                 font=font, fill='black', anchor="mm")
    
    # Add sequence at the top with white background
    seq_text = f"Sequence: {sequence}"
    bbox = draw.textbbox((center_x, 100), seq_text, font=small_font)
    padding = 10
    draw.rectangle([bbox[0]-padding, bbox[1]-padding, 
                   bbox[2]+padding, bbox[3]+padding], 
                  fill='white', outline='white')
    draw.text((center_x, 100), seq_text, 
             font=small_font, fill='black', anchor="mm")
    
    return img

"""
def annotate_cyclic_structure(mol, sequence):
    """Create structure visualization with just the sequence header"""
    # Generate 2D coordinates
    AllChem.Compute2DCoords(mol)
    
    # Create drawer with larger size for annotations
    drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000)  # Even larger size
    
    # Draw molecule first
    drawer.drawOptions().addAtomIndices = False
    drawer.DrawMolecule(mol)
    drawer.FinishDrawing()
    
    # Convert to PIL Image
    img = Image.open(BytesIO(drawer.GetDrawingText()))
    draw = ImageDraw.Draw(img)
    small_font = ImageFont.load_default()
    
    # Add just the sequence header at the top
    seq_text = f"Sequence: {sequence}"
    bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
    padding = 10
    draw.rectangle([bbox[0]-padding, bbox[1]-padding, 
                   bbox[2]+padding, bbox[3]+padding], 
                  fill='white', outline='white')
    draw.text((1000, 100), seq_text, 
             font=small_font, fill='black', anchor="mm")
    
    return img
def create_enhanced_linear_viz(sequence, smiles):
    """
    Create an enhanced linear representation showing segment identification process
    with improved segment handling
    """
    # Create figure with two subplots
    fig = plt.figure(figsize=(15, 10))
    gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
    ax_struct = fig.add_subplot(gs[0])
    ax_detail = fig.add_subplot(gs[1])
    
    # Parse sequence and get residues
    if sequence.startswith('cyclo('):
        residues = sequence[6:-1].split('-')
    else:
        residues = sequence.split('-')
    
    # Get molecule and analyze bonds
    mol = Chem.MolFromSmiles(smiles)
    
    # Split SMILES into segments for analysis
    bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
    segments = re.split(bond_pattern, smiles)
    segments = [s for s in segments if s]  # Remove empty segments
    
    # Debug print
    print(f"Number of residues: {len(residues)}")
    print(f"Number of segments: {len(segments)}")
    print("Segments:", segments)
    
    # Top subplot - Basic structure
    ax_struct.set_xlim(0, 10)
    ax_struct.set_ylim(0, 2)
    
    num_residues = len(residues)
    spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
    
    # Draw basic structure
    y_pos = 1.5
    for i in range(num_residues):
        x_pos = 0.5 + i * spacing
        
        # Draw amino acid box
        rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, 
                               facecolor='lightblue', edgecolor='black')
        ax_struct.add_patch(rect)
        
        # Draw connecting bonds if not the last residue
        if i < num_residues - 1:
            # Find the next bond pattern after this residue
            bond_segment = None
            for j in range(len(segments)):
                if re.match(bond_pattern, segments[j]):
                    if j > i*2 and j//2 == i:  # Found the right bond
                        bond_segment = segments[j]
                        break
            
            if bond_segment:
                bond_type, is_n_methylated = identify_linkage_type(bond_segment)
            else:
                bond_type = 'peptide'  # Default if not found
                
            bond_color = 'black' if bond_type == 'peptide' else 'red'
            linestyle = '-' if bond_type == 'peptide' else '--'
            
            # Draw bond line
            ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], 
                         color=bond_color, linestyle=linestyle, linewidth=2)
            
            # Add bond type label
            mid_x = x_pos + spacing/2
            bond_label = f"{bond_type}"
            if is_n_methylated:
                bond_label += "\n(N-Me)"
            ax_struct.text(mid_x, y_pos+0.1, bond_label, 
                         ha='center', va='bottom', fontsize=10, 
                         color=bond_color)
        
        # Add residue label
        ax_struct.text(x_pos, y_pos-0.5, residues[i], 
                      ha='center', va='top', fontsize=14)
    
    # Bottom subplot - Detailed breakdown
    ax_detail.set_ylim(0, len(segments)+1)
    ax_detail.set_xlim(0, 1)
    
    # Create detailed breakdown
    segment_y = len(segments)  # Start from top
    for i, segment in enumerate(segments):
        y = segment_y - i
        
        # Check if this is a bond segment
        if re.match(bond_pattern, segment):
            bond_type, is_n_methylated = identify_linkage_type(segment)
            text = f"Bond {i//2 + 1}: {bond_type}"
            if is_n_methylated:
                text += " (N-methylated)"
            color = 'red'
        else:
            # Get next and previous segments for context
            next_seg = segments[i+1] if i+1 < len(segments) else None
            prev_seg = segments[i-1] if i > 0 else None
            
            residue, modifications = identify_residue(segment, next_seg, prev_seg)
            text = f"Residue {i//2 + 1}: {residue}"
            if modifications:
                text += f" ({', '.join(modifications)})"
            color = 'blue'
        
        # Add segment analysis
        ax_detail.text(0.05, y, text, fontsize=12, color=color)
        ax_detail.text(0.5, y, f"SMILES: {segment}", fontsize=10, color='gray')
    
    # If cyclic, add connection indicator
    if sequence.startswith('cyclo('):
        ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
                          arrowprops=dict(arrowstyle='<->', color='red', lw=2))
        ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', 
                      ha='center', color='red', fontsize=14)
    
    # Add titles and adjust layout
    ax_struct.set_title("Peptide Structure Overview", pad=20)
    ax_detail.set_title("Segment Analysis Breakdown", pad=20)
    
    # Remove axes
    for ax in [ax_struct, ax_detail]:
        ax.set_xticks([])
        ax.set_yticks([])
        ax.axis('off')
    
    plt.tight_layout()
    return fig

def process_input(smiles_input=None, file_obj=None, show_linear=False):
    """Process input and create visualizations"""
    results = []
    images = []
    
    # Handle direct SMILES input
    if smiles_input:
        smiles = smiles_input.strip()
        
        # First check if it's a peptide
        if not is_peptide(smiles):
            return "Error: Input SMILES does not appear to be a peptide structure.", None, None
            
        try:
            # Create molecule
            mol = Chem.MolFromSmiles(smiles)
            if mol is None:
                return "Error: Invalid SMILES notation.", None, None
            
            # Get sequence and cyclic information
            sequence = parse_peptide(smiles)
            is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
            
            # Create cyclic structure visualization
            img_cyclic = annotate_cyclic_structure(mol, sequence)
            
            # Create linear representation if requested
            img_linear = None
            if show_linear:
                fig_linear = create_enhanced_linear_viz(sequence, smiles)
                
                # Convert matplotlib figure to image
                buf = BytesIO()
                fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
                buf.seek(0)
                img_linear = Image.open(buf)
                plt.close(fig_linear)
            
            # Format text output
            output_text = f"Sequence: {sequence}\n"
            output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
            
            return output_text, img_cyclic, img_linear
            
        except Exception as e:
            return f"Error processing SMILES: {str(e)}", None, None
    
    # Handle file input
    if file_obj is not None:
        try:
            # Handle file content based on file object type
            if hasattr(file_obj, 'name'):  # If it's a file path
                with open(file_obj.name, 'r') as f:
                    content = f.read()
            else:  # If it's file content
                content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
            
            output_text = ""
            for line in content.splitlines():
                smiles = line.strip()
                if smiles:
                    if not is_peptide(smiles):
                        output_text += f"Skipping non-peptide SMILES: {smiles}\n"
                        continue
                    result = analyze_single_smiles(smiles)
                    output_text += f"Sequence: {result['Sequence']}\n"
                    output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
                    output_text += "-" * 50 + "\n"
            return output_text, None, None
            
        except Exception as e:
            return f"Error processing file: {str(e)}", None, None
    
    return "No input provided.", None, None

# Create Gradio interface with simplified examples
iface = gr.Interface(
    fn=process_input,
    inputs=[
        gr.Textbox(
            label="Enter SMILES string",
            placeholder="Enter SMILES notation of peptide...",
            lines=2
        ),
        gr.File(
            label="Or upload a text file with SMILES",
            file_types=[".txt"],
            type="binary"
        ),
        gr.Checkbox(
            label="Show linear representation"
        )
    ],
    outputs=[
        gr.Textbox(
            label="Analysis Results",
            lines=10
        ),
        gr.Image(
            label="2D Structure with Annotations"
        ),
        gr.Image(
            label="Linear Representation"
        )
    ],
    title="Peptide Structure Analyzer and Visualizer",
    description="""
    Analyze and visualize peptide structures from SMILES notation:
    1. Validates if the input is a peptide structure
    2. Determines if the peptide is cyclic
    3. Parses the amino acid sequence
    4. Creates 2D structure visualization with residue annotations
    5. Optional linear representation
    
    Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
    
    Example SMILES strings (copy and paste):
    ```
    CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
    ```
    ```
    C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
    ```
    """,
    flagging_mode="never"
)

# Launch the app
if __name__ == "__main__":
    iface.launch()