Spaces:
Running
Running
File size: 22,976 Bytes
45d6af3 b871fd6 45d6af3 b871fd6 45d6af3 b871fd6 45d6af3 b871fd6 45d6af3 b871fd6 45d6af3 b871fd6 45d6af3 1b33af5 b871fd6 a21a9e8 b871fd6 4f4356d b871fd6 4f4356d b871fd6 4f4356d b871fd6 4f4356d 4f0aaef b871fd6 4f4356d b871fd6 4f4356d b871fd6 1b33af5 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 3226415 b871fd6 45d6af3 b871fd6 45d6af3 b871fd6 3226415 b871fd6 45d6af3 b871fd6 1b33af5 b871fd6 1b33af5 b871fd6 1b33af5 b871fd6 45d6af3 0bbb5ea 45d6af3 1b33af5 b871fd6 ad4a786 45d6af3 b871fd6 ad4a786 b871fd6 ad4a786 b871fd6 45d6af3 b871fd6 45d6af3 a0cad87 1b33af5 45d6af3 e1d6be0 45d6af3 0f570bc e1d6be0 45d6af3 54ac992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
import gradio as gr
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
def is_peptide(smiles):
"""Check if the SMILES represents a peptide by looking for peptide bonds"""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# Look for peptide bonds: NC(=O) pattern
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
if mol.HasSubstructMatch(peptide_bond_pattern):
return True
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
if mol.HasSubstructMatch(n_methyl_pattern):
return True
# Look for ester bonds in cyclic depsipeptides: OC(=O) pattern
ester_bond_pattern = Chem.MolFromSmarts('O[C](=O)')
if mol.HasSubstructMatch(ester_bond_pattern):
return True
return False
def remove_nested_branches(smiles):
"""Remove nested branches from SMILES string"""
result = ''
depth = 0
for char in smiles:
if char == '(':
depth += 1
elif char == ')':
depth -= 1
elif depth == 0:
result += char
return result
def identify_linkage_type(segment):
"""
Identify the type of linkage between residues
Returns: tuple (type, is_n_methylated)
"""
if 'OC(=O)' in segment:
return ('ester', False)
elif 'N(C)C(=O)' in segment:
return ('peptide', True) # N-methylated peptide bond
elif 'NC(=O)' in segment:
return ('peptide', False) # Regular peptide bond
return (None, False)
def identify_residue(segment, next_segment=None, prev_segment=None):
"""
Identify amino acid residues with modifications and special handling for Proline
Returns: tuple (residue, modifications)
"""
modifications = []
# Check for modifications in the next segment
if next_segment:
if 'N(C)C(=O)' in next_segment:
modifications.append('N-Me')
if 'OC(=O)' in next_segment:
modifications.append('O-linked')
# Special case for Proline - check for CCCN pattern and its cyclization
# Proline can appear in several patterns due to its cyclic nature
if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
return ('Pro', modifications)
# Check if this segment is part of a Proline ring by looking at context
if prev_segment and next_segment:
if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
combined = prev_segment + segment + next_segment
if re.search(r'CCCN.*C\(=O\)', combined):
return ('Pro', modifications)
# Aromatic amino acids
if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:
return ('Phe', modifications)
if 'c2ccc(O)cc2' in segment:
return ('Tyr', modifications)
if 'c1c[nH]c2ccccc12' in segment:
return ('Trp', modifications)
if 'c1cnc[nH]1' in segment:
return ('His', modifications)
# Branched chain amino acids
if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:
return ('Leu', modifications)
if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:
return ('Leu', modifications)
if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
return ('Val', modifications)
if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:
return ('Ile', modifications)
# Small/polar amino acids
if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
return ('Ala', modifications)
if '[C@H](CO)' in segment:
return ('Ser', modifications)
if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
return ('Thr', modifications)
if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
return ('Gly', modifications)
# Rest of amino acids remain the same...
# [Previous code for other amino acids]
return (None, modifications)
def parse_peptide(smiles):
"""
Parse peptide sequence with enhanced Proline recognition
"""
# Split on peptide bonds while preserving cycle numbers
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
segments = re.split(bond_pattern, smiles)
segments = [s for s in segments if s]
sequence = []
i = 0
while i < len(segments):
segment = segments[i]
next_segment = segments[i+1] if i+1 < len(segments) else None
prev_segment = segments[i-1] if i > 0 else None
# Skip pure bond patterns
if re.match(r'.*C\(=O\)$', segment):
i += 1
continue
residue, modifications = identify_residue(segment, next_segment, prev_segment)
if residue:
# Format residue with modifications
formatted_residue = residue
if modifications:
formatted_residue += f"({','.join(modifications)})"
sequence.append(formatted_residue)
i += 1
is_cyclic = is_cyclic_peptide(smiles)
# Print debug information
print("\nDetailed Analysis:")
print("Segments:", segments)
print("Found sequence:", sequence)
# Format the final sequence
if is_cyclic:
return f"cyclo({'-'.join(sequence)})"
return '-'.join(sequence)
def is_cyclic_peptide(smiles):
"""
Determine if SMILES represents a cyclic peptide by checking:
1. Proper cycle number pairing
2. Presence of peptide bonds between cycle points
3. Distinguishing between aromatic rings and peptide cycles
"""
cycle_info = {}
# Find all cycle numbers and their contexts
for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
number = match.group(2)
pre_context = match.group(1) or ''
post_context = match.group(3) or ''
position = match.start(2)
if number not in cycle_info:
cycle_info[number] = []
cycle_info[number].append({
'position': position,
'pre_context': pre_context,
'post_context': post_context,
'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
})
# Check each cycle
peptide_cycles = []
aromatic_cycles = []
for number, occurrences in cycle_info.items():
if len(occurrences) != 2: # Must have exactly 2 occurrences
continue
start, end = occurrences[0]['position'], occurrences[1]['position']
# Get the segment between cycle points
segment = smiles[start:end+1]
clean_segment = remove_nested_branches(segment)
# Check if this is an aromatic ring
is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
# Check if this is a peptide cycle
has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
if is_aromatic:
aromatic_cycles.append(number)
elif has_peptide_bond:
peptide_cycles.append(number)
return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles
def analyze_single_smiles(smiles):
"""Analyze a single SMILES string"""
try:
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
sequence = parse_peptide(smiles)
details = {
#'SMILES': smiles,
'Sequence': sequence,
'Is Cyclic': 'Yes' if is_cyclic else 'No',
#'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
#'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
}
return details
except Exception as e:
return {
#'SMILES': smiles,
'Sequence': f'Error: {str(e)}',
'Is Cyclic': 'Error',
#'Peptide Cycles': 'Error',
#'Aromatic Cycles': 'Error'
}
"""
def annotate_cyclic_structure(mol, sequence):
'''Create annotated 2D structure with clear, non-overlapping residue labels'''
# Generate 2D coordinates
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
# Get residue list and reverse it to match structural representation
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
residues = list(reversed(residues)) # Reverse the sequence
# Draw molecule first to get its bounds
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
# Try to use DejaVuSans as it's commonly available on Linux systems
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
# Fallback to Arial if available (common on Windows)
font = ImageFont.truetype("arial.ttf", 60)
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
# If no TrueType fonts are available, fall back to default
print("Warning: TrueType fonts not available, using default font")
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Get molecule bounds
conf = mol.GetConformer()
positions = []
for i in range(mol.GetNumAtoms()):
pos = conf.GetAtomPosition(i)
positions.append((pos.x, pos.y))
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
min_x, max_x = min(x_coords), max(x_coords)
min_y, max_y = min(y_coords), max(y_coords)
# Calculate scaling factors
scale = 150 # Increased scale factor
center_x = 1000 # Image center
center_y = 1000
# Add residue labels in a circular arrangement around the structure
n_residues = len(residues)
radius = 700 # Distance of labels from center
# Start from the rightmost point (3 o'clock position) and go counterclockwise
# Offset by -3 positions to align with structure
offset = 0 # Adjust this value to match the structure alignment
for i, residue in enumerate(residues):
# Calculate position in a circle around the structure
# Start from 0 (3 o'clock) and go counterclockwise
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues)
# Calculate label position
label_x = center_x + radius * np.cos(angle)
label_y = center_y + radius * np.sin(angle)
# Draw residue label
text = f"{i+1}. {residue}"
bbox = draw.textbbox((label_x, label_y), text, font=font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((label_x, label_y), text,
font=font, fill='black', anchor="mm")
# Add sequence at the top with white background
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((center_x, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
"""
def annotate_cyclic_structure(mol, sequence):
"""Create structure visualization with just the sequence header"""
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
# Draw molecule first
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
small_font = ImageFont.load_default()
# Add just the sequence header at the top
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((1000, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
def create_enhanced_linear_viz(sequence, smiles):
"""
Create an enhanced linear representation showing segment identification process
with improved segment handling
"""
# Create figure with two subplots
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
ax_struct = fig.add_subplot(gs[0])
ax_detail = fig.add_subplot(gs[1])
# Parse sequence and get residues
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
# Get molecule and analyze bonds
mol = Chem.MolFromSmiles(smiles)
# Split SMILES into segments for analysis
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
segments = re.split(bond_pattern, smiles)
segments = [s for s in segments if s] # Remove empty segments
# Debug print
print(f"Number of residues: {len(residues)}")
print(f"Number of segments: {len(segments)}")
print("Segments:", segments)
# Top subplot - Basic structure
ax_struct.set_xlim(0, 10)
ax_struct.set_ylim(0, 2)
num_residues = len(residues)
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
# Draw basic structure
y_pos = 1.5
for i in range(num_residues):
x_pos = 0.5 + i * spacing
# Draw amino acid box
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
facecolor='lightblue', edgecolor='black')
ax_struct.add_patch(rect)
# Draw connecting bonds if not the last residue
if i < num_residues - 1:
# Find the next bond pattern after this residue
bond_segment = None
for j in range(len(segments)):
if re.match(bond_pattern, segments[j]):
if j > i*2 and j//2 == i: # Found the right bond
bond_segment = segments[j]
break
if bond_segment:
bond_type, is_n_methylated = identify_linkage_type(bond_segment)
else:
bond_type = 'peptide' # Default if not found
bond_color = 'black' if bond_type == 'peptide' else 'red'
linestyle = '-' if bond_type == 'peptide' else '--'
# Draw bond line
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
color=bond_color, linestyle=linestyle, linewidth=2)
# Add bond type label
mid_x = x_pos + spacing/2
bond_label = f"{bond_type}"
if is_n_methylated:
bond_label += "\n(N-Me)"
ax_struct.text(mid_x, y_pos+0.1, bond_label,
ha='center', va='bottom', fontsize=10,
color=bond_color)
# Add residue label
ax_struct.text(x_pos, y_pos-0.5, residues[i],
ha='center', va='top', fontsize=14)
# Bottom subplot - Detailed breakdown
ax_detail.set_ylim(0, len(segments)+1)
ax_detail.set_xlim(0, 1)
# Create detailed breakdown
segment_y = len(segments) # Start from top
for i, segment in enumerate(segments):
y = segment_y - i
# Check if this is a bond segment
if re.match(bond_pattern, segment):
bond_type, is_n_methylated = identify_linkage_type(segment)
text = f"Bond {i//2 + 1}: {bond_type}"
if is_n_methylated:
text += " (N-methylated)"
color = 'red'
else:
# Get next and previous segments for context
next_seg = segments[i+1] if i+1 < len(segments) else None
prev_seg = segments[i-1] if i > 0 else None
residue, modifications = identify_residue(segment, next_seg, prev_seg)
text = f"Residue {i//2 + 1}: {residue}"
if modifications:
text += f" ({', '.join(modifications)})"
color = 'blue'
# Add segment analysis
ax_detail.text(0.05, y, text, fontsize=12, color=color)
ax_detail.text(0.5, y, f"SMILES: {segment}", fontsize=10, color='gray')
# If cyclic, add connection indicator
if sequence.startswith('cyclo('):
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
ha='center', color='red', fontsize=14)
# Add titles and adjust layout
ax_struct.set_title("Peptide Structure Overview", pad=20)
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
# Remove axes
for ax in [ax_struct, ax_detail]:
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
plt.tight_layout()
return fig
def process_input(smiles_input=None, file_obj=None, show_linear=False):
"""Process input and create visualizations"""
results = []
images = []
# Handle direct SMILES input
if smiles_input:
smiles = smiles_input.strip()
# First check if it's a peptide
if not is_peptide(smiles):
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
try:
# Create molecule
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Error: Invalid SMILES notation.", None, None
# Get sequence and cyclic information
sequence = parse_peptide(smiles)
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
# Create cyclic structure visualization
img_cyclic = annotate_cyclic_structure(mol, sequence)
# Create linear representation if requested
img_linear = None
if show_linear:
fig_linear = create_enhanced_linear_viz(sequence, smiles)
# Convert matplotlib figure to image
buf = BytesIO()
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
img_linear = Image.open(buf)
plt.close(fig_linear)
# Format text output
output_text = f"Sequence: {sequence}\n"
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
return output_text, img_cyclic, img_linear
except Exception as e:
return f"Error processing SMILES: {str(e)}", None, None
# Handle file input
if file_obj is not None:
try:
# Handle file content based on file object type
if hasattr(file_obj, 'name'): # If it's a file path
with open(file_obj.name, 'r') as f:
content = f.read()
else: # If it's file content
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
output_text = ""
for line in content.splitlines():
smiles = line.strip()
if smiles:
if not is_peptide(smiles):
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
continue
result = analyze_single_smiles(smiles)
output_text += f"Sequence: {result['Sequence']}\n"
output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
output_text += "-" * 50 + "\n"
return output_text, None, None
except Exception as e:
return f"Error processing file: {str(e)}", None, None
return "No input provided.", None, None
# Create Gradio interface with simplified examples
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),
gr.File(
label="Or upload a text file with SMILES",
file_types=[".txt"],
type="binary"
),
gr.Checkbox(
label="Show linear representation"
)
],
outputs=[
gr.Textbox(
label="Analysis Results",
lines=10
),
gr.Image(
label="2D Structure with Annotations"
),
gr.Image(
label="Linear Representation"
)
],
title="Peptide Structure Analyzer and Visualizer",
description="""
Analyze and visualize peptide structures from SMILES notation:
1. Validates if the input is a peptide structure
2. Determines if the peptide is cyclic
3. Parses the amino acid sequence
4. Creates 2D structure visualization with residue annotations
5. Optional linear representation
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
Example SMILES strings (copy and paste):
```
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
```
```
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
```
""",
flagging_mode="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch() |