Spaces:
Running
Running
import gradio as gr | |
import re | |
import pandas as pd | |
from io import StringIO | |
import rdkit | |
from rdkit import Chem | |
from rdkit.Chem import AllChem, Draw | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from io import BytesIO | |
import re | |
from rdkit import Chem | |
class PeptideAnalyzer: | |
def __init__(self): | |
self.bond_patterns = [ | |
(r'OC\(=O\)', 'ester'), # Ester bond | |
(r'N\(C\)C\(=O\)', 'n_methyl'), # N-methylated peptide bond | |
(r'N[12]C\(=O\)', 'proline'), # Proline peptide bond | |
(r'NC\(=O\)', 'peptide'), # Standard peptide bond | |
(r'C\(=O\)N\(C\)', 'n_methyl_reverse'), # Reverse N-methylated | |
(r'C\(=O\)N[12]?', 'peptide_reverse') # Reverse peptide bond | |
] | |
def is_peptide(self, smiles): | |
"""Check if the SMILES represents a peptide structure""" | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return False | |
# Look for peptide bonds: NC(=O) pattern | |
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)') | |
if mol.HasSubstructMatch(peptide_bond_pattern): | |
return True | |
# Look for N-methylated peptide bonds: N(C)C(=O) pattern | |
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)') | |
if mol.HasSubstructMatch(n_methyl_pattern): | |
return True | |
return False | |
def is_cyclic(self, smiles): | |
""" | |
Determine if SMILES represents a cyclic peptide by checking head-tail connection. | |
Returns: (is_cyclic, peptide_cycles, aromatic_cycles) | |
""" | |
# First find aromatic rings | |
aromatic_cycles = [] | |
for match in re.finditer(r'c[12]ccccc[12]', smiles): | |
number = match.group(0)[1] | |
if number not in aromatic_cycles: | |
aromatic_cycles.append(str(number)) | |
# Find potential cycle numbers and their contexts | |
cycle_closures = [] | |
# Look for cycle starts and corresponding ends | |
cycle_patterns = [ | |
# Pattern pairs (start, end) | |
(r'[^\d](\d)[A-Z@]', r'C\1=O$'), # Classic C=O ending | |
(r'[^\d](\d)[A-Z@]', r'N\1C\(=O\)'), # N1C(=O) pattern | |
(r'[^\d](\d)[A-Z@]', r'N\1C$'), # Simple N1C ending | |
(r'[^\d](\d)C\(=O\)', r'N\1[A-Z]'), # Reverse connection | |
(r'H(\d)', r'N\1C'), # H1...N1C pattern | |
(r'[^\d](\d)(?:C|N|O)', r'(?:C|N)\1(?:\(|$)'), # Generic cycle closure | |
] | |
for start_pat, end_pat in cycle_patterns: | |
start_matches = re.finditer(start_pat, smiles) | |
for start_match in start_matches: | |
number = start_match.group(1) | |
if number not in aromatic_cycles: # Skip aromatic ring numbers | |
# Look for corresponding end pattern | |
end_match = re.search(end_pat.replace('\\1', number), smiles) | |
if end_match and end_match.start() > start_match.start(): | |
cycle_closures.append(number) | |
break | |
# Remove duplicates and aromatic numbers | |
peptide_cycles = list(set(cycle_closures) - set(aromatic_cycles)) | |
is_cyclic = len(peptide_cycles) > 0 | |
return is_cyclic, peptide_cycles, aromatic_cycles | |
def split_on_bonds(self, smiles): | |
"""Split SMILES into segments with simplified Pro handling""" | |
positions = [] | |
used = set() | |
# Find Gly pattern first | |
gly_pattern = r'NCC\(=O\)' | |
for match in re.finditer(gly_pattern, smiles): | |
if not any(p in range(match.start(), match.end()) for p in used): | |
positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': 'gly', | |
'pattern': match.group() | |
}) | |
used.update(range(match.start(), match.end())) | |
for pattern, bond_type in self.bond_patterns: | |
for match in re.finditer(pattern, smiles): | |
if not any(p in range(match.start(), match.end()) for p in used): | |
positions.append({ | |
'start': match.start(), | |
'end': match.end(), | |
'type': bond_type, | |
'pattern': match.group() | |
}) | |
used.update(range(match.start(), match.end())) | |
# Sort by position | |
positions.sort(key=lambda x: x['start']) | |
# Create segments | |
segments = [] | |
if positions: | |
# First segment | |
if positions[0]['start'] > 0: | |
segments.append({ | |
'content': smiles[0:positions[0]['start']], | |
'bond_after': positions[0]['pattern'] | |
}) | |
# Process segments | |
for i in range(len(positions)-1): | |
current = positions[i] | |
next_pos = positions[i+1] | |
if current['type'] == 'gly': | |
segments.append({ | |
'content': 'NCC(=O)', | |
'bond_before': positions[i-1]['pattern'] if i > 0 else None, | |
'bond_after': next_pos['pattern'] | |
}) | |
else: | |
content = smiles[current['end']:next_pos['start']] | |
if content: | |
segments.append({ | |
'content': content, | |
'bond_before': current['pattern'], | |
'bond_after': next_pos['pattern'] | |
}) | |
# Last segment | |
if positions[-1]['end'] < len(smiles): | |
segments.append({ | |
'content': smiles[positions[-1]['end']:], | |
'bond_before': positions[-1]['pattern'] | |
}) | |
return segments | |
def identify_residue(self, segment): | |
"""Identify residue with Pro reconstruction""" | |
content = segment['content'] | |
mods = self.get_modifications(segment) | |
# Special handling for Pro: reconstruct the complete pattern | |
if (segment.get('bond_after') == 'N2C(=O)' and 'CCC' in content) or \ | |
('CCCN2' in content and content.endswith('=O')): # End case | |
# Reconstruct the complete Pro pattern | |
if '[C@@H]2' in content or '[C@H]2' in content: | |
return 'Pro', mods | |
if ('C[C@H](CCCC)' in content or 'C[C@@H](CCCC)' in content) and 'CC(C)' not in content: | |
return 'Nle', mods | |
# Ornithine (Orn) - 3-carbon chain with NH2 | |
if ('C[C@H](CCCN)' in content or 'C[C@@H](CCCN)' in content) and 'CC(C)' not in content: | |
return 'Orn', mods | |
# 2-Naphthylalanine (2Nal) - distinct from Phe pattern | |
if ('Cc3cc2ccccc2c3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return '2Nal', mods | |
# Cyclohexylalanine (Cha) - already in your code but moved here for clarity | |
if 'N2CCCCC2' in content or 'CCCCC2' in content: | |
return 'Cha', mods | |
# Aminobutyric acid (Abu) - 2-carbon chain | |
if ('C[C@H](CC)' in content or 'C[C@@H](CC)' in content) and not any(p in content for p in ['CC(C)', 'CCCC', 'CCC(C)']): | |
return 'Abu', mods | |
# Pipecolic acid (Pip) - 6-membered ring like Pro | |
if ('N3CCCCC3' in content or 'CCCCC3' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Pip', mods | |
# Cyclohexylglycine (Chg) - direct cyclohexyl without CH2 | |
if ('C[C@H](C1CCCCC1)' in content or 'C[C@@H](C1CCCCC1)' in content): | |
return 'Chg', mods | |
# 4-Fluorophenylalanine (4F-Phe) | |
if ('Cc2ccc(F)cc2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return '4F-Phe', mods | |
# Regular residue identification | |
if ('NCC(=O)' in content) or (content == 'C'): | |
# Middle case - between bonds | |
if segment.get('bond_before') and segment.get('bond_after'): | |
if ('C(=O)N' in segment['bond_before'] or 'C(=O)N(C)' in segment['bond_before']): | |
return 'Gly', mods | |
# Terminal case - at the end | |
elif segment.get('bond_before') and segment.get('bond_before').startswith('C(=O)N'): | |
return 'Gly', mods | |
if 'CC(C)C[C@H]' in content or 'CC(C)C[C@@H]' in content: | |
return 'Leu', mods | |
if '[C@@H](CC(C)C)' in content or '[C@H](CC(C)C)' in content: | |
return 'Leu', mods | |
if ('C(C)C[C@H]' in content or 'C(C)C[C@@H]' in content) and 'CC(C)C' not in content: | |
return 'Ile', mods | |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content: | |
return 'Thr', mods | |
if '[C@H](Cc2ccccc2)' in content or '[C@@H](Cc2ccccc2)' in content: | |
return 'Phe', mods | |
if '[C@H](C(C)C)' in content or '[C@@H](C(C)C)' in content: | |
if not any(p in content for p in ['CC(C)C[C@H]', 'CC(C)C[C@@H]']): | |
return 'Val', mods | |
if '[C@H](COC(C)(C)C)' in content or '[C@@H](COC(C)(C)C)' in content: | |
return 'O-tBu', mods | |
if ('[C@H](C)' in content or '[C@@H](C)' in content): | |
if not any(p in content for p in ['C(C)C', 'COC', 'CN(', 'C(C)O']): | |
return 'Ala', mods | |
# Tyrosine (Tyr) - 4-hydroxybenzyl side chain | |
if ('Cc2ccc(O)cc2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Tyr', mods | |
# Tryptophan (Trp) - Indole side chain | |
if ('Cc2c[nH]c3ccccc23' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Trp', mods | |
# Serine (Ser) - Hydroxymethyl side chain | |
if '[C@H](CO)' in content or '[C@@H](CO)' in content: | |
if not ('C(C)O' in content or 'COC' in content): | |
return 'Ser', mods | |
# Threonine (Thr) - 1-hydroxyethyl side chain | |
if '[C@@H]([C@@H](C)O)' in content or '[C@H]([C@H](C)O)' in content: | |
return 'Thr', mods | |
# Cysteine (Cys) - Thiol side chain | |
if '[C@H](CS)' in content or '[C@@H](CS)' in content: | |
return 'Cys', mods | |
# Methionine (Met) - Methylthioethyl side chain | |
if ('C[C@H](CCSC)' in content or 'C[C@@H](CCSC)' in content): | |
return 'Met', mods | |
# Asparagine (Asn) - Carbamoylmethyl side chain | |
if ('CC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Asn', mods | |
# Glutamine (Gln) - Carbamoylethyl side chain | |
if ('CCC(=O)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Gln', mods | |
# Aspartic acid (Asp) - Carboxymethyl side chain | |
if ('CC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Asp', mods | |
# Glutamic acid (Glu) - Carboxyethyl side chain | |
if ('CCC(=O)O' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Glu', mods | |
# Lysine (Lys) - 4-aminobutyl side chain | |
if ('C[C@H](CCCCN)' in content or 'C[C@@H](CCCCN)' in content): | |
return 'Lys', mods | |
# Arginine (Arg) - 3-guanidinopropyl side chain | |
if ('CCCNC(=N)N' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'Arg', mods | |
# Histidine (His) - Imidazole side chain | |
if ('Cc2cnc[nH]2' in content) and ('C[C@H]' in content or 'C[C@@H]' in content): | |
return 'His', mods | |
return None, mods | |
def get_modifications(self, segment): | |
"""Get modifications based on bond types""" | |
mods = [] | |
if segment.get('bond_after'): | |
if 'N(C)' in segment['bond_after'] or segment['bond_after'].startswith('C(=O)N(C)'): | |
mods.append('N-Me') | |
if 'OC(=O)' in segment['bond_after']: | |
mods.append('O-linked') | |
return mods | |
def analyze_structure(self, smiles): | |
"""Main analysis function""" | |
print("\nAnalyzing structure:", smiles) | |
# Split into segments | |
segments = self.split_on_bonds(smiles) | |
print("\nSegment Analysis:") | |
sequence = [] | |
for i, segment in enumerate(segments): | |
print(f"\nSegment {i}:") | |
print(f"Content: {segment['content']}") | |
print(f"Bond before: {segment.get('bond_before', 'None')}") | |
print(f"Bond after: {segment.get('bond_after', 'None')}") | |
residue, mods = self.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence.append(residue) | |
print(f"Identified as: {residue}") | |
print(f"Modifications: {mods}") | |
else: | |
print(f"Warning: Could not identify residue in segment: {segment['content']}") | |
# Check if cyclic | |
is_cyclic = 'N1' in smiles or 'N2' in smiles | |
final_sequence = f"cyclo({'-'.join(sequence)})" if is_cyclic else '-'.join(sequence) | |
print(f"\nFinal sequence: {final_sequence}") | |
return final_sequence | |
""" | |
def annotate_cyclic_structure(mol, sequence): | |
'''Create annotated 2D structure with clear, non-overlapping residue labels''' | |
# Generate 2D coordinates | |
# Generate 2D coordinates | |
AllChem.Compute2DCoords(mol) | |
# Create drawer with larger size for annotations | |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size | |
# Get residue list and reverse it to match structural representation | |
if sequence.startswith('cyclo('): | |
residues = sequence[6:-1].split('-') | |
else: | |
residues = sequence.split('-') | |
residues = list(reversed(residues)) # Reverse the sequence | |
# Draw molecule first to get its bounds | |
drawer.drawOptions().addAtomIndices = False | |
drawer.DrawMolecule(mol) | |
drawer.FinishDrawing() | |
# Convert to PIL Image | |
img = Image.open(BytesIO(drawer.GetDrawingText())) | |
draw = ImageDraw.Draw(img) | |
try: | |
# Try to use DejaVuSans as it's commonly available on Linux systems | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
except OSError: | |
try: | |
# Fallback to Arial if available (common on Windows) | |
font = ImageFont.truetype("arial.ttf", 60) | |
small_font = ImageFont.truetype("arial.ttf", 60) | |
except OSError: | |
# If no TrueType fonts are available, fall back to default | |
print("Warning: TrueType fonts not available, using default font") | |
font = ImageFont.load_default() | |
small_font = ImageFont.load_default() | |
# Get molecule bounds | |
conf = mol.GetConformer() | |
positions = [] | |
for i in range(mol.GetNumAtoms()): | |
pos = conf.GetAtomPosition(i) | |
positions.append((pos.x, pos.y)) | |
x_coords = [p[0] for p in positions] | |
y_coords = [p[1] for p in positions] | |
min_x, max_x = min(x_coords), max(x_coords) | |
min_y, max_y = min(y_coords), max(y_coords) | |
# Calculate scaling factors | |
scale = 150 # Increased scale factor | |
center_x = 1000 # Image center | |
center_y = 1000 | |
# Add residue labels in a circular arrangement around the structure | |
n_residues = len(residues) | |
radius = 700 # Distance of labels from center | |
# Start from the rightmost point (3 o'clock position) and go counterclockwise | |
# Offset by -3 positions to align with structure | |
offset = 0 # Adjust this value to match the structure alignment | |
for i, residue in enumerate(residues): | |
# Calculate position in a circle around the structure | |
# Start from 0 (3 o'clock) and go counterclockwise | |
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues) | |
# Calculate label position | |
label_x = center_x + radius * np.cos(angle) | |
label_y = center_y + radius * np.sin(angle) | |
# Draw residue label | |
text = f"{i+1}. {residue}" | |
bbox = draw.textbbox((label_x, label_y), text, font=font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((label_x, label_y), text, | |
font=font, fill='black', anchor="mm") | |
# Add sequence at the top with white background | |
seq_text = f"Sequence: {sequence}" | |
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((center_x, 100), seq_text, | |
font=small_font, fill='black', anchor="mm") | |
return img | |
""" | |
def annotate_cyclic_structure(mol, sequence): | |
"""Create structure visualization with just the sequence header""" | |
# Generate 2D coordinates | |
AllChem.Compute2DCoords(mol) | |
# Create drawer with larger size for annotations | |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) | |
# Draw molecule first | |
drawer.drawOptions().addAtomIndices = False | |
drawer.DrawMolecule(mol) | |
drawer.FinishDrawing() | |
# Convert to PIL Image | |
img = Image.open(BytesIO(drawer.GetDrawingText())) | |
draw = ImageDraw.Draw(img) | |
try: | |
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
except OSError: | |
try: | |
small_font = ImageFont.truetype("arial.ttf", 60) | |
except OSError: | |
print("Warning: TrueType fonts not available, using default font") | |
small_font = ImageFont.load_default() | |
# Add just the sequence header at the top | |
seq_text = f"Sequence: {sequence}" | |
bbox = draw.textbbox((1000, 100), seq_text, font=small_font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((1000, 100), seq_text, | |
font=small_font, fill='black', anchor="mm") | |
return img | |
def create_enhanced_linear_viz(sequence, smiles): | |
"""Create an enhanced linear representation using PeptideAnalyzer""" | |
analyzer = PeptideAnalyzer() # Create analyzer instance | |
# Create figure with two subplots | |
fig = plt.figure(figsize=(15, 10)) | |
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2]) | |
ax_struct = fig.add_subplot(gs[0]) | |
ax_detail = fig.add_subplot(gs[1]) | |
# Parse sequence and get residues | |
if sequence.startswith('cyclo('): | |
residues = sequence[6:-1].split('-') | |
else: | |
residues = sequence.split('-') | |
# Get segments using analyzer | |
segments = analyzer.split_on_bonds(smiles) | |
# Debug print | |
print(f"Number of residues: {len(residues)}") | |
print(f"Number of segments: {len(segments)}") | |
# Top subplot - Basic structure | |
ax_struct.set_xlim(0, 10) | |
ax_struct.set_ylim(0, 2) | |
num_residues = len(residues) | |
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0 | |
# Draw basic structure | |
y_pos = 1.5 | |
for i in range(num_residues): | |
x_pos = 0.5 + i * spacing | |
# Draw amino acid box | |
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, | |
facecolor='lightblue', edgecolor='black') | |
ax_struct.add_patch(rect) | |
# Draw connecting bonds if not the last residue | |
if i < num_residues - 1: | |
segment = segments[i] if i < len(segments) else None | |
if segment: | |
# Determine bond type from segment info | |
bond_type = 'ester' if 'O-linked' in segment.get('bond_after', '') else 'peptide' | |
is_n_methylated = 'N-Me' in segment.get('bond_after', '') | |
bond_color = 'red' if bond_type == 'ester' else 'black' | |
linestyle = '--' if bond_type == 'ester' else '-' | |
# Draw bond line | |
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], | |
color=bond_color, linestyle=linestyle, linewidth=2) | |
# Add bond type label | |
mid_x = x_pos + spacing/2 | |
bond_label = f"{bond_type}" | |
if is_n_methylated: | |
bond_label += "\n(N-Me)" | |
ax_struct.text(mid_x, y_pos+0.1, bond_label, | |
ha='center', va='bottom', fontsize=10, | |
color=bond_color) | |
# Add residue label | |
ax_struct.text(x_pos, y_pos-0.5, residues[i], | |
ha='center', va='top', fontsize=14) | |
# Bottom subplot - Detailed breakdown | |
ax_detail.set_ylim(0, len(segments)+1) | |
ax_detail.set_xlim(0, 1) | |
# Create detailed breakdown | |
segment_y = len(segments) # Start from top | |
for i, segment in enumerate(segments): | |
y = segment_y - i | |
# Check if this is a bond or residue | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
text = f"Residue {i+1}: {residue}" | |
if mods: | |
text += f" ({', '.join(mods)})" | |
color = 'blue' | |
else: | |
# Must be a bond | |
text = f"Bond {i}: " | |
if 'O-linked' in segment.get('bond_after', ''): | |
text += "ester" | |
elif 'N-Me' in segment.get('bond_after', ''): | |
text += "peptide (N-methylated)" | |
else: | |
text += "peptide" | |
color = 'red' | |
# Add segment analysis | |
ax_detail.text(0.05, y, text, fontsize=12, color=color) | |
ax_detail.text(0.5, y, f"SMILES: {segment.get('content', '')}", fontsize=10, color='gray') | |
# If cyclic, add connection indicator | |
if sequence.startswith('cyclo('): | |
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos), | |
arrowprops=dict(arrowstyle='<->', color='red', lw=2)) | |
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', | |
ha='center', color='red', fontsize=14) | |
# Add titles and adjust layout | |
ax_struct.set_title("Peptide Structure Overview", pad=20) | |
ax_detail.set_title("Segment Analysis Breakdown", pad=20) | |
# Remove axes | |
for ax in [ax_struct, ax_detail]: | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
def process_input(smiles_input=None, file_obj=None, show_linear=False, show_segment_details=False): | |
"""Process input and create visualizations using PeptideAnalyzer""" | |
analyzer = PeptideAnalyzer() | |
# Handle direct SMILES input | |
if smiles_input: | |
smiles = smiles_input.strip() | |
# First check if it's a peptide using analyzer's method | |
if not analyzer.is_peptide(smiles): | |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None | |
try: | |
# Create molecule | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return "Error: Invalid SMILES notation.", None, None | |
# Use analyzer to get sequence | |
segments = analyzer.split_on_bonds(smiles) | |
# Process segments and build sequence | |
sequence_parts = [] | |
output_text = "" | |
# Only include segment analysis in output if requested | |
if show_segment_details: | |
output_text += "Segment Analysis:\n" | |
for i, segment in enumerate(segments): | |
output_text += f"\nSegment {i}:\n" | |
output_text += f"Content: {segment['content']}\n" | |
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n" | |
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n" | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
output_text += f"Identified as: {residue}\n" | |
output_text += f"Modifications: {mods}\n" | |
else: | |
output_text += f"Warning: Could not identify residue in segment: {segment['content']}\n" | |
output_text += "\n" | |
else: | |
# Just build sequence without detailed analysis in output | |
for segment in segments: | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
# Check if cyclic using analyzer's method | |
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles) | |
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts) | |
# Create cyclic structure visualization | |
img_cyclic = annotate_cyclic_structure(mol, sequence) | |
# Create linear representation if requested | |
img_linear = None | |
if show_linear: | |
fig_linear = create_enhanced_linear_viz(sequence, smiles) | |
buf = BytesIO() | |
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300) | |
buf.seek(0) | |
img_linear = Image.open(buf) | |
plt.close(fig_linear) | |
# Add summary to output | |
summary = "Summary:\n" | |
summary += f"Sequence: {sequence}\n" | |
summary += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" | |
if is_cyclic: | |
summary += f"Peptide Cycles: {', '.join(peptide_cycles)}\n" | |
#summary += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n" | |
return summary + output_text, img_cyclic, img_linear | |
except Exception as e: | |
return f"Error processing SMILES: {str(e)}", None, None | |
# Handle file input | |
if file_obj is not None: | |
try: | |
# Handle file content | |
if hasattr(file_obj, 'name'): | |
with open(file_obj.name, 'r') as f: | |
content = f.read() | |
else: | |
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj) | |
output_text = "" | |
for line in content.splitlines(): | |
smiles = line.strip() | |
if smiles: | |
# Check if it's a peptide | |
if not analyzer.is_peptide(smiles): | |
output_text += f"Skipping non-peptide SMILES: {smiles}\n" | |
continue | |
# Process this SMILES | |
segments = analyzer.split_on_bonds(smiles) | |
sequence_parts = [] | |
# Add segment details if requested | |
if show_segment_details: | |
output_text += f"\nSegment Analysis for SMILES: {smiles}\n" | |
for i, segment in enumerate(segments): | |
output_text += f"\nSegment {i}:\n" | |
output_text += f"Content: {segment['content']}\n" | |
output_text += f"Bond before: {segment.get('bond_before', 'None')}\n" | |
output_text += f"Bond after: {segment.get('bond_after', 'None')}\n" | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
output_text += f"Identified as: {residue}\n" | |
output_text += f"Modifications: {mods}\n" | |
else: | |
for segment in segments: | |
residue, mods = analyzer.identify_residue(segment) | |
if residue: | |
if mods: | |
sequence_parts.append(f"{residue}({','.join(mods)})") | |
else: | |
sequence_parts.append(residue) | |
# Get cyclicity and create sequence | |
is_cyclic, peptide_cycles, aromatic_cycles = analyzer.is_cyclic(smiles) | |
sequence = f"cyclo({'-'.join(sequence_parts)})" if is_cyclic else '-'.join(sequence_parts) | |
output_text += f"\nSummary for SMILES: {smiles}\n" | |
output_text += f"Sequence: {sequence}\n" | |
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" | |
if is_cyclic: | |
output_text += f"Peptide Cycles: {', '.join(peptide_cycles)}\n" | |
#output_text += f"Aromatic Cycles: {', '.join(aromatic_cycles)}\n" | |
output_text += "-" * 50 + "\n" | |
return output_text, None, None | |
except Exception as e: | |
return f"Error processing file: {str(e)}", None, None | |
return "No input provided.", None, None | |
iface = gr.Interface( | |
fn=process_input, | |
inputs=[ | |
gr.Textbox( | |
label="Enter SMILES string", | |
placeholder="Enter SMILES notation of peptide...", | |
lines=2 | |
), | |
gr.File( | |
label="Or upload a text file with SMILES", | |
file_types=[".txt"] | |
), | |
gr.Checkbox( | |
label="Show linear representation", | |
value=False | |
), | |
gr.Checkbox( | |
label="Show segment details", | |
value=False | |
) | |
], | |
outputs=[ | |
gr.Textbox( | |
label="Analysis Results", | |
lines=10 | |
), | |
gr.Image( | |
label="2D Structure with Annotations", | |
type="pil" | |
), | |
gr.Image( | |
label="Linear Representation", | |
type="pil" | |
) | |
], | |
title="Peptide Structure Analyzer and Visualizer", | |
description=""" | |
Analyze and visualize peptide structures from SMILES notation: | |
1. Validates if the input is a peptide structure | |
2. Determines if the peptide is cyclic | |
3. Parses the amino acid sequence | |
4. Creates 2D structure visualization with residue annotations | |
5. Optional linear representation | |
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings | |
Example SMILES strings (copy and paste): | |
``` | |
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O | |
``` | |
``` | |
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O | |
``` | |
``` | |
CC(C)C[C@H]1C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)NCC(=O)N[C@H](C(=O)N2CCCCC2)CC(=O)N(C)CC(=O)N[C@@H]([C@@H](C)O)C(=O)N(C)[C@@H](C)C(=O)N[C@@H](COC(C)(C)C)C(=O)N(C)[C@@H](Cc2ccccc2)C(=O)N1C | |
``` | |
""", | |
flagging_mode="never" | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |