Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
import io | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from random import choice | |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", | |
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", | |
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] | |
def get_figure(in_pil_img, in_results): | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(in_pil_img) | |
ax = plt.gca() | |
for prediction in in_results: | |
selected_color = choice(COLORS) | |
x, y = prediction['box']['xmin'], prediction['box']['ymin'], | |
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin'] | |
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) | |
ax.text(x, y - 3, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict={ | |
"family" : "Arial", | |
"size" : 20, | |
"color" : selected_color, | |
"weight" : "bold", | |
}) | |
plt.axis("off") | |
return plt.gcf() | |
def classify(in_pil_img): | |
detector = pipeline("object-detection", "facebook/detr-resnet-50") | |
results = detector(in_pil_img, { "threshold": 0.9 }) | |
figure = get_figure(in_pil_img, results) | |
buf = io.BytesIO() | |
figure.savefig(buf, bbox_inches='tight') | |
buf.seek(0) | |
output_pil_img = Image.open(buf) | |
return output_pil_img | |
demo = gr.Interface(classify, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Object Detection", | |
examples=["https://iili.io/JgN38oQ.jpg", "https://iili.io/JgO3WrP.png", "https://iili.io/JgOnTut.png", "https://iili.io/JgOofO7.jpg"] | |
) | |
demo.launch() | |