File size: 11,889 Bytes
26f62c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import re
import os
import logging
from typing import List

from opencc import OpenCC

import openai
import tiktoken

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")


class GPTAgent:
    def __init__(self, model):
        openai.api_key = OPENAI_API_KEY
        self.model = model
        self.temperature = 0.8
        self.frequency_penalty = 0
        self.presence_penalty = 0.6
        self.max_tokens = 2048
        self.split_max_tokens = 13000

    def request(self, messages):
        response = self.agent.complete(messages=messages)
        return response.choices[0].message["content"]

    def split_into_many(self, text) -> List[str]:
        tokenizer = tiktoken.get_encoding("cl100k_base")
        # Split the text into sentences
        sentences = text.split("。")

        # Get the number of tokens for each sentence
        n_tokens = [len(tokenizer.encode(" " + sentence)) for sentence in sentences]

        chunks = []
        tokens_so_far = 0
        chunk = []

        # Loop through the sentences and tokens joined together in a tuple
        for sentence, token in zip(sentences, n_tokens):
            # If the number of tokens so far plus the number of tokens in the current sentence is greater
            # than the max number of tokens, then add the chunk to the list of chunks and reset
            # the chunk and tokens so far
            if tokens_so_far + token > self.split_max_tokens:
                chunks.append("。".join(chunk) + "。")
                chunk = []
                tokens_so_far = 0

            # If the number of tokens in the current sentence is greater than the max number of
            # tokens, go to the next sentence
            if token > self.split_max_tokens:
                continue

            # Otherwise, add the sentence to the chunk and add the number of tokens to the total
            chunk.append(sentence)
            tokens_so_far += token + 1

        # if the length of the text is less than the max number of tokens, then return the text
        return [text] if len(chunks) == 0 else chunks

    def preprocess(self, text):
        text = text.replace("\n", " ").replace("\r", "")
        return text

    def parse_result(self, result):
        parsed_result = []
        chinese_converter = OpenCC("s2tw")
        for i in range(len(result)):
            result[i] = result[i].split(",")
            if len(result[i]) == 1:
                result[i] = result[i][0].split("、")
            if len(result[i]) == 1:
                result[i] = result[i][0].split(",")
            for word in result[i]:
                try:
                    parsed_result.append(
                        chinese_converter.convert(word).strip().replace("。", "")
                    )
                except Exception as e:
                    logging.error(e)
                    logging.error("Failed to parse result")
        return parsed_result


class Translator(GPTAgent):
    def __init__(self):
        super().__init__("gpt-3.5-turbo")

    def translate_to_chinese(self, text):
        system_prompt = """
            I want you to act as an Chinese translator, spelling corrector and improver. 
            I will speak to you in English, translate it and answer in the corrected and improved version of my text, in Traditional Chinese.  
            Keep the meaning same, but make them more literary. I want you to only reply the correction, the improvements and nothing else, do not write explanations and DO NOT use any Simplified Chinese. 
        """
        system_prompt_zh_tw = """
            我希望你擔任中文翻譯、拼寫糾正及改進的角色。
            我將用英文與你交流,請將其翻譯並用繁體中文回答,同時對我的文本進行糾正和改進。
            保持原意不變,但使其更具文學性。我希望你僅回覆更正、改進的部分,不要寫解釋,也不要使用任何简体中文。
        """
        messages = [
            {"role": "system", "content": f"{system_prompt_zh_tw}"},
            {"role": "user", "content": text},
        ]
        try:
            response = openai.ChatCompletion.create(
                model=self.model,
                messages=messages,
                temperature=self.temperature,
                frequency_penalty=self.frequency_penalty,
                presence_penalty=self.presence_penalty,
            )
        except Exception as e:
            logging.error(e)
            logging.error("Failed to translate to Chinese")

        # translate from simplified chinese to traditional chinese
        chinese_converter = OpenCC("s2tw")
        return chinese_converter.convert(
            response["choices"][0]["message"]["content"].strip()
        )


class EmbeddingGenerator(GPTAgent):
    def __init__(self):
        super().__init__("text-davinci-002")

    def get_embedding(self, text):
        return openai.Embedding.create(input=text, engine="text-embedding-ada-002")[
            "data"
        ][0]["embedding"]


class KeywordsGenerator(GPTAgent):
    def __init__(self):
        super().__init__("gpt-3.5-turbo")

    def extract_keywords(self, text):
        system_prompt = """
            請你為以下內容抓出 5 個關鍵字用以搜尋這篇文章,並用「,」來分隔
        """
        text_chunks = self.split_into_many(text)
        keywords = []
        for i in range(len(text_chunks)):
            text = text_chunks[i]
            messages = [
                {"role": "system", "content": f"{system_prompt}"},
                {"role": "user", "content": f"{self.preprocess(text)}"},
            ]
            try:
                response = openai.ChatCompletion.create(
                    model=self.model,
                    messages=messages,
                    temperature=0,
                    max_tokens=self.max_tokens,
                    frequency_penalty=self.frequency_penalty,
                    presence_penalty=self.presence_penalty,
                )
                keywords.append(response["choices"][0]["message"]["content"].strip())
            except Exception as e:
                logging.error(e)
                logging.error("Failed to extract keywords")
        return self.parse_result(keywords)


class TopicsGenerator(GPTAgent):
    def __init__(self):
        super().__init__("gpt-3.5-turbo")

    def extract_topics(self, text):
        system_prompt = """
            請你為以下內容給予 3 個高度抽象的主題分類這篇文章,並用「,」來分隔
        """
        text_chunks = self.split_into_many(text)
        topics = []
        for i in range(len(text_chunks)):
            text = text_chunks[i]
            messages = [
                {"role": "system", "content": f"{system_prompt}"},
                {"role": "user", "content": f"{self.preprocess(text)}"},
            ]
            try:
                response = openai.ChatCompletion.create(
                    model=self.model,
                    messages=messages,
                    temperature=0,
                    max_tokens=self.max_tokens,
                    frequency_penalty=self.frequency_penalty,
                    presence_penalty=self.presence_penalty,
                )
                topics.append(response["choices"][0]["message"]["content"].strip())
            except Exception as e:
                logging.error(e)
                logging.error("Failed to extract topics")
        return self.parse_result(topics)


class Summarizer(GPTAgent):
    def __init__(self):
        super().__init__("gpt-3.5-turbo-16k")

    def summarize(self, text):
        system_prompt = """
            請幫我總結以下的文章。  
        """
        messages = [
            {"role": "system", "content": f"{system_prompt}"},
            {"role": "user", "content": text},
        ]
        try:
            response = openai.ChatCompletion.create(
                model=self.model,
                messages=messages,
                temperature=self.temperature,
                max_tokens=self.max_tokens,
                frequency_penalty=self.frequency_penalty,
                presence_penalty=self.presence_penalty,
            )
        except Exception as e:
            logging.error(e)
            logging.error("Failed to summarize")
        chinese_converter = OpenCC("s2tw")
        print(f'the summary is {response["choices"][0]["message"]["content"].strip()}')
        response = chinese_converter.convert(
            response["choices"][0]["message"]["content"]
        )

        return re.sub(r"\n+", "<br>", response)


class QuestionAnswerer(GPTAgent):
    def __init__(self):
        super().__init__("gpt-3.5-turbo-16k")

    def answer_chunk_question(self, text, question):
        system_prompt = """
            你是一個知識檢索系統,我會給你一份文件,請幫我依照文件內容回答問題,並用繁體中文回答。以下是文件內容
        """
        text_chunks = self.split_into_many(text)
        answer_chunks = []
        for i in range(len(text_chunks)):
            text = text_chunks[i]
            messages = [
                {"role": "system", "content": f"{system_prompt} + '\n' '{text}'"},
                {"role": "user", "content": f"{question}"},
            ]
            try:
                response = openai.ChatCompletion.create(
                    model=self.model,
                    messages=messages,
                    temperature=self.temperature,
                    max_tokens=1024,
                    frequency_penalty=self.frequency_penalty,
                    presence_penalty=self.presence_penalty,
                )
            except Exception as e:
                logging.error(e)
                logging.error("Failed to answer question")
            chinese_converter = OpenCC("s2tw")
            answer_chunks.append(
                chinese_converter.convert(
                    response["choices"][0]["message"]["content"].strip()
                )
            )

        return "。".join(answer_chunks)

    def answer_question(self, context, context_page_num, context_file_name, history):
        system_prompt = """
            你是一個知識檢索系統,我會給你一份文件,請幫我依照文件內容回答問題,並用繁體中文回答。以下是文件內容
        """

        history = self.__construct_message_history(history)
        messages = [
            {"role": "system", "content": f"{system_prompt} + '\n' '''{context}'''"},
        ] + history
        try:
            response = openai.ChatCompletion.create(
                model=self.model,
                messages=messages,
                temperature=self.temperature,
                max_tokens=2048,
                frequency_penalty=self.frequency_penalty,
                presence_penalty=self.presence_penalty,
            )
            chinese_converter = OpenCC("s2tw")
            page_num_message = f"以下內容來自 {context_file_name},第 {context_page_num} 頁\n\n"
            bot_answer = response["choices"][0]["message"]["content"]
            whole_answer = page_num_message + bot_answer

            return chinese_converter.convert(whole_answer)
        except Exception as e:
            logging.error(e)
            logging.error("Failed to answer question")

    def __construct_message_history(self, history):
        print(f"history is {history}")
        max_history_length = 10
        if len(history) > max_history_length:
            history = history[-max_history_length:]

        messages = []
        for i in range(len(history)):
            messages.append({"role": "user", "content": history[i][0]})
            if history[i][1] is not None:
                messages.append({"role": "assistant", "content": history[i][1]})

        return messages