Spaces:
Build error
Build error
File size: 7,697 Bytes
93f4bab 18a3255 93f4bab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import json
import os
import time
from io import BytesIO
from pathlib import Path
import librosa
import numpy as np
import soundfile
import torch
import utils
from infer_tools.f0_static import compare_pitch, static_f0_time
from modules.diff.diffusion import GaussianDiffusion
from modules.diff.net import DiffNet
from modules.vocoders.nsf_hifigan import NsfHifiGAN
from preprocessing.hubertinfer import HubertEncoder
from preprocessing.process_pipeline import File2Batch, get_pitch_parselmouth
from utils.hparams import hparams, set_hparams
from utils.pitch_utils import denorm_f0, norm_interp_f0
def timeit(func):
def run(*args, **kwargs):
t = time.time()
res = func(*args, **kwargs)
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
return res
return run
def format_wav(audio_path):
if Path(audio_path).suffix == '.wav':
return
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
def fill_a_to_b(a, b):
if len(a) < len(b):
for _ in range(0, len(b) - len(a)):
a.append(a[0])
def get_end_file(dir_path, end):
file_lists = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
return file_lists
def mkdir(paths: list):
for path in paths:
if not os.path.exists(path):
os.mkdir(path)
class Svc:
def __init__(self, project_name, config_name, hubert_gpu, model_path, onnx=False):
self.project_name = project_name
self.DIFF_DECODERS = {
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']),
}
self.model_path = model_path
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self._ = set_hparams(config=config_name, exp_name=self.project_name, infer=True,
reset=True, hparams_str='', print_hparams=False)
hparams['hubert_gpu'] = hubert_gpu
self.hubert = HubertEncoder(hparams['hubert_path'], onnx=onnx)
self.model = GaussianDiffusion(
phone_encoder=self.hubert,
out_dims=hparams['audio_num_mel_bins'],
denoise_fn=self.DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
timesteps=hparams['timesteps'],
K_step=hparams['K_step'],
loss_type=hparams['diff_loss_type'],
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
)
utils.load_ckpt(self.model, self.model_path, 'model', force=True, strict=True)
self.model.cuda()
self.vocoder = NsfHifiGAN()
def infer(self, in_path, key, acc, spk_id=0, use_crepe=True, singer=False):
batch = self.pre(in_path, acc, spk_id, use_crepe)
batch['f0'] = batch['f0'] + (key / 12)
batch['f0'][batch['f0'] > np.log2(hparams['f0_max'])] = 0
@timeit
def diff_infer():
spk_embed = batch.get('spk_embed') if not hparams['use_spk_id'] else batch.get('spk_ids')
energy = batch.get('energy').cuda() if batch.get('energy') else None
if spk_embed is None:
spk_embed = torch.LongTensor([0])
diff_outputs = self.model(
hubert=batch['hubert'].cuda(), spk_embed_id=spk_embed.cuda(), mel2ph=batch['mel2ph'].cuda(),
f0=batch['f0'].cuda(), energy=energy, ref_mels=batch["mels"].cuda(), infer=True)
return diff_outputs
outputs = diff_infer()
batch['outputs'] = outputs['mel_out']
batch['mel2ph_pred'] = outputs['mel2ph']
batch['f0_gt'] = denorm_f0(batch['f0'], batch['uv'], hparams)
batch['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(batch, singer, in_path)
@timeit
def after_infer(self, prediction, singer, in_path):
for k, v in prediction.items():
if type(v) is torch.Tensor:
prediction[k] = v.cpu().numpy()
# remove paddings
mel_gt = prediction["mels"]
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
mel_pred = prediction["outputs"]
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
mel_pred = mel_pred[mel_pred_mask]
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
f0_gt = prediction.get("f0_gt")
f0_pred = prediction.get("f0_pred")
if f0_pred is not None:
f0_gt = f0_gt[mel_gt_mask]
if len(f0_pred) > len(mel_pred_mask):
f0_pred = f0_pred[:len(mel_pred_mask)]
f0_pred = f0_pred[mel_pred_mask]
torch.cuda.is_available() and torch.cuda.empty_cache()
if singer:
data_path = in_path.replace("batch", "singer_data")
mel_path = data_path[:-4] + "_mel.npy"
f0_path = data_path[:-4] + "_f0.npy"
np.save(mel_path, mel_pred)
np.save(f0_path, f0_pred)
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
return f0_gt, f0_pred, wav_pred
def pre(self, wav_fn, accelerate, spk_id=0, use_crepe=True):
if isinstance(wav_fn, BytesIO):
item_name = self.project_name
else:
song_info = wav_fn.split('/')
item_name = song_info[-1].split('.')[-2]
temp_dict = {'wav_fn': wav_fn, 'spk_id': spk_id, 'id': 0}
temp_dict = File2Batch.temporary_dict2processed_input(item_name, temp_dict, self.hubert, infer=True,
use_crepe=use_crepe)
hparams['pndm_speedup'] = accelerate
batch = File2Batch.processed_input2batch([getitem(temp_dict)])
return batch
def evaluate_key(self, wav_path, key, auto_key):
if "f0_static" in hparams.keys():
f0_static = json.loads(hparams['f0_static'])
wav, mel = self.vocoder.wav2spec(wav_path)
input_f0 = get_pitch_parselmouth(wav, mel, hparams)[0]
pitch_time_temp = static_f0_time(input_f0)
eval_dict = {}
for trans_key in range(-12, 12):
eval_dict[trans_key] = compare_pitch(f0_static, pitch_time_temp, trans_key=trans_key)
sort_key = sorted(eval_dict, key=eval_dict.get, reverse=True)[:5]
print(f"推荐移调:{sort_key}")
if auto_key:
print(f"自动变调已启用,您的输入key被{sort_key[0]}key覆盖,控制参数为auto_key")
return sort_key[0]
else:
print("config缺少f0_staic,无法使用自动变调,可通过infer_tools/data_static添加")
return key
def getitem(item):
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
sample = {
"id": item['id'],
"spk_id": item['spk_id'],
"item_name": item['item_name'],
"hubert": hubert,
"mel": spec,
"pitch": pitch,
"f0": f0,
"uv": uv,
"mel2ph": mel2ph,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_energy_embed']:
sample['energy'] = item['energy']
return sample
|