File size: 4,685 Bytes
93f4bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import math
from math import sqrt

import torch
import torch.nn as nn
import torch.nn.functional as F

from modules.commons.common_layers import Mish
from utils.hparams import hparams

Linear = nn.Linear
ConvTranspose2d = nn.ConvTranspose2d


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self

    def override(self, attrs):
        if isinstance(attrs, dict):
            self.__dict__.update(**attrs)
        elif isinstance(attrs, (list, tuple, set)):
            for attr in attrs:
                self.override(attr)
        elif attrs is not None:
            raise NotImplementedError
        return self


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


def Conv1d(*args, **kwargs):
    layer = nn.Conv1d(*args, **kwargs)
    nn.init.kaiming_normal_(layer.weight)
    return layer


@torch.jit.script
def silu(x):
    return x * torch.sigmoid(x)


class ResidualBlock(nn.Module):
    def __init__(self, encoder_hidden, residual_channels, dilation):
        super().__init__()
        self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
        self.diffusion_projection = Linear(residual_channels, residual_channels)
        self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
        self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)

    def forward(self, x, conditioner, diffusion_step):
        diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
        conditioner = self.conditioner_projection(conditioner)
        y = x + diffusion_step

        y = self.dilated_conv(y) + conditioner

        gate, filter = torch.chunk(y, 2, dim=1)
        # Using torch.split instead of torch.chunk to avoid using onnx::Slice
        # gate, filter = torch.split(y, torch.div(y.shape[1], 2), dim=1)

        y = torch.sigmoid(gate) * torch.tanh(filter)

        y = self.output_projection(y)
        residual, skip = torch.chunk(y, 2, dim=1)
        # Using torch.split instead of torch.chunk to avoid using onnx::Slice
        # residual, skip = torch.split(y, torch.div(y.shape[1], 2), dim=1)

        return (x + residual) / sqrt(2.0), skip


class DiffNet(nn.Module):
    def __init__(self, in_dims=80):
        super().__init__()
        self.params = params = AttrDict(
            # Model params
            encoder_hidden=hparams['hidden_size'],
            residual_layers=hparams['residual_layers'],
            residual_channels=hparams['residual_channels'],
            dilation_cycle_length=hparams['dilation_cycle_length'],
        )
        self.input_projection = Conv1d(in_dims, params.residual_channels, 1)
        self.diffusion_embedding = SinusoidalPosEmb(params.residual_channels)
        dim = params.residual_channels
        self.mlp = nn.Sequential(
            nn.Linear(dim, dim * 4),
            Mish(),
            nn.Linear(dim * 4, dim)
        )
        self.residual_layers = nn.ModuleList([
            ResidualBlock(params.encoder_hidden, params.residual_channels, 2 ** (i % params.dilation_cycle_length))
            for i in range(params.residual_layers)
        ])
        self.skip_projection = Conv1d(params.residual_channels, params.residual_channels, 1)
        self.output_projection = Conv1d(params.residual_channels, in_dims, 1)
        nn.init.zeros_(self.output_projection.weight)

    def forward(self, spec, diffusion_step, cond):
        """

        :param spec: [B, 1, M, T]
        :param diffusion_step: [B, 1]
        :param cond: [B, M, T]
        :return:
        """
        x = spec[:, 0]
        x = self.input_projection(x)  # x [B, residual_channel, T]

        x = F.relu(x)
        diffusion_step = self.diffusion_embedding(diffusion_step)
        diffusion_step = self.mlp(diffusion_step)
        skip = []
        for layer_id, layer in enumerate(self.residual_layers):
            x, skip_connection = layer(x, cond, diffusion_step)
            skip.append(skip_connection)

        x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers))
        x = self.skip_projection(x)
        x = F.relu(x)
        x = self.output_projection(x)  # [B, 80, T]
        return x[:, None, :, :]