Spaces:
Build error
Build error
File size: 9,075 Bytes
93f4bab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import torch
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.commons.common_layers import SinusoidalPositionalEmbedding
from utils.hparams import hparams
from utils.pitch_utils import f0_to_coarse, denorm_f0
class LayerNorm(torch.nn.LayerNorm):
"""Layer normalization module.
:param int nout: output dim size
:param int dim: dimension to be normalized
"""
def __init__(self, nout, dim=-1):
"""Construct an LayerNorm object."""
super(LayerNorm, self).__init__(nout, eps=1e-12)
self.dim = dim
def forward(self, x):
"""Apply layer normalization.
:param torch.Tensor x: input tensor
:return: layer normalized tensor
:rtype torch.Tensor
"""
if self.dim == -1:
return super(LayerNorm, self).forward(x)
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)
class PitchPredictor(torch.nn.Module):
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
dropout_rate=0.1, padding='SAME'):
"""Initilize pitch predictor module.
Args:
idim (int): Input dimension.
n_layers (int, optional): Number of convolutional layers.
n_chans (int, optional): Number of channels of convolutional layers.
kernel_size (int, optional): Kernel size of convolutional layers.
dropout_rate (float, optional): Dropout rate.
"""
super(PitchPredictor, self).__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.padding = padding
for idx in range(n_layers):
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
if padding == 'SAME'
else (kernel_size - 1, 0), 0),
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
torch.nn.ReLU(),
LayerNorm(n_chans, dim=1),
torch.nn.Dropout(dropout_rate)
)]
self.linear = torch.nn.Linear(n_chans, odim)
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))
def forward(self, xs):
"""
:param xs: [B, T, H]
:return: [B, T, H]
"""
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
xs = xs + positions
xs = xs.transpose(1, -1) # (B, idim, Tmax)
for f in self.conv:
xs = f(xs) # (B, C, Tmax)
# NOTE: calculate in log domain
xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H)
return xs
class SvcEncoder(nn.Module):
def __init__(self, dictionary, out_dims=None):
super().__init__()
# self.dictionary = dictionary
self.padding_idx = 0
self.hidden_size = hparams['hidden_size']
self.out_dims = out_dims
if out_dims is None:
self.out_dims = hparams['audio_num_mel_bins']
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
if hparams['use_pitch_embed']:
self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx)
self.pitch_predictor = PitchPredictor(
self.hidden_size,
n_chans=predictor_hidden,
n_layers=hparams['predictor_layers'],
dropout_rate=hparams['predictor_dropout'],
odim=2 if hparams['pitch_type'] == 'frame' else 1,
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
if hparams['use_energy_embed']:
self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx)
if hparams['use_spk_id']:
self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size)
if hparams['use_split_spk_id']:
self.spk_embed_f0 = Embedding(hparams['num_spk'], self.hidden_size)
self.spk_embed_dur = Embedding(hparams['num_spk'], self.hidden_size)
elif hparams['use_spk_embed']:
self.spk_embed_proj = Linear(256, self.hidden_size, bias=True)
def forward(self, hubert, mel2ph=None, spk_embed=None,
ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=True,
spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
ret = {}
encoder_out = hubert
src_nonpadding = (hubert != 0).any(-1)[:, :, None]
# add ref style embed
# Not implemented
# variance encoder
var_embed = 0
# encoder_out_dur denotes encoder outputs for duration predictor
# in speech adaptation, duration predictor use old speaker embedding
if hparams['use_spk_embed']:
spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
elif hparams['use_spk_id']:
spk_embed_id = spk_embed
if spk_embed_dur_id is None:
spk_embed_dur_id = spk_embed_id
if spk_embed_f0_id is None:
spk_embed_f0_id = spk_embed_id
spk_embed_0 = self.spk_embed_proj(spk_embed_id.to(hubert.device))[:, None, :]
spk_embed_1 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :]
spk_embed_2 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :]
spk_embed = 1 * spk_embed_0 + 0 * spk_embed_1 + 0 * spk_embed_2
spk_embed_dur = spk_embed_f0 = spk_embed
if hparams['use_split_spk_id']:
spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
else:
spk_embed_dur = spk_embed_f0 = spk_embed = 0
ret['mel2ph'] = mel2ph
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
# add pitch and energy embed
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
if hparams['use_pitch_embed']:
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
if hparams['use_energy_embed']:
decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)
ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
return ret
def add_dur(self, dur_input, mel2ph, hubert, ret):
src_padding = (hubert == 0).all(-1)
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
if mel2ph is None:
dur, xs = self.dur_predictor.inference(dur_input, src_padding)
ret['dur'] = xs
ret['dur_choice'] = dur
mel2ph = self.length_regulator(dur, src_padding).detach()
else:
ret['dur'] = self.dur_predictor(dur_input, src_padding)
ret['mel2ph'] = mel2ph
return mel2ph
def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs):
x = decoder_inp # [B, T, H]
x = self.mel_out(x)
return x * tgt_nonpadding
def out2mel(self, out):
return out
def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
pitch_padding = (mel2ph == 0)
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)
if pitch_padding is not None:
f0[pitch_padding] = 0
pitch = f0_to_coarse(f0_denorm, hparams) # start from 0
ret['pitch_pred'] = pitch.unsqueeze(-1)
pitch_embedding = self.pitch_embed(pitch)
return pitch_embedding
def add_energy(self, decoder_inp, energy, ret):
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
ret['energy_pred'] = energy # energy_pred = self.energy_predictor(decoder_inp)[:, :, 0]
energy = torch.clamp(energy * 256 // 4, max=255).long() # energy_to_coarse
energy_embedding = self.energy_embed(energy)
return energy_embedding
@staticmethod
def mel_norm(x):
return (x + 5.5) / (6.3 / 2) - 1
@staticmethod
def mel_denorm(x):
return (x + 1) * (6.3 / 2) - 5.5
|