File size: 9,075 Bytes
93f4bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch

from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.commons.common_layers import SinusoidalPositionalEmbedding
from utils.hparams import hparams
from utils.pitch_utils import f0_to_coarse, denorm_f0


class LayerNorm(torch.nn.LayerNorm):
    """Layer normalization module.
    :param int nout: output dim size
    :param int dim: dimension to be normalized
    """

    def __init__(self, nout, dim=-1):
        """Construct an LayerNorm object."""
        super(LayerNorm, self).__init__(nout, eps=1e-12)
        self.dim = dim

    def forward(self, x):
        """Apply layer normalization.
        :param torch.Tensor x: input tensor
        :return: layer normalized tensor
        :rtype torch.Tensor
        """
        if self.dim == -1:
            return super(LayerNorm, self).forward(x)
        return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)


class PitchPredictor(torch.nn.Module):
    def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
                 dropout_rate=0.1, padding='SAME'):
        """Initilize pitch predictor module.
        Args:
            idim (int): Input dimension.
            n_layers (int, optional): Number of convolutional layers.
            n_chans (int, optional): Number of channels of convolutional layers.
            kernel_size (int, optional): Kernel size of convolutional layers.
            dropout_rate (float, optional): Dropout rate.
        """
        super(PitchPredictor, self).__init__()
        self.conv = torch.nn.ModuleList()
        self.kernel_size = kernel_size
        self.padding = padding
        for idx in range(n_layers):
            in_chans = idim if idx == 0 else n_chans
            self.conv += [torch.nn.Sequential(
                torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
                                       if padding == 'SAME'
                                       else (kernel_size - 1, 0), 0),
                torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
                torch.nn.ReLU(),
                LayerNorm(n_chans, dim=1),
                torch.nn.Dropout(dropout_rate)
            )]
        self.linear = torch.nn.Linear(n_chans, odim)
        self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
        self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))

    def forward(self, xs):
        """

        :param xs: [B, T, H]
        :return: [B, T, H]
        """
        positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
        xs = xs + positions
        xs = xs.transpose(1, -1)  # (B, idim, Tmax)
        for f in self.conv:
            xs = f(xs)  # (B, C, Tmax)
        # NOTE: calculate in log domain
        xs = self.linear(xs.transpose(1, -1))  # (B, Tmax, H)
        return xs


class SvcEncoder(nn.Module):
    def __init__(self, dictionary, out_dims=None):
        super().__init__()
        # self.dictionary = dictionary
        self.padding_idx = 0
        self.hidden_size = hparams['hidden_size']
        self.out_dims = out_dims
        if out_dims is None:
            self.out_dims = hparams['audio_num_mel_bins']
        self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
        predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
        if hparams['use_pitch_embed']:
            self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx)
            self.pitch_predictor = PitchPredictor(
                self.hidden_size,
                n_chans=predictor_hidden,
                n_layers=hparams['predictor_layers'],
                dropout_rate=hparams['predictor_dropout'],
                odim=2 if hparams['pitch_type'] == 'frame' else 1,
                padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
        if hparams['use_energy_embed']:
            self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx)
        if hparams['use_spk_id']:
            self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size)
            if hparams['use_split_spk_id']:
                self.spk_embed_f0 = Embedding(hparams['num_spk'], self.hidden_size)
                self.spk_embed_dur = Embedding(hparams['num_spk'], self.hidden_size)
        elif hparams['use_spk_embed']:
            self.spk_embed_proj = Linear(256, self.hidden_size, bias=True)

    def forward(self, hubert, mel2ph=None, spk_embed=None,
                ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=True,
                spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs):
        ret = {}
        encoder_out = hubert
        src_nonpadding = (hubert != 0).any(-1)[:, :, None]

        # add ref style embed
        # Not implemented
        # variance encoder
        var_embed = 0

        # encoder_out_dur denotes encoder outputs for duration predictor
        # in speech adaptation, duration predictor use old speaker embedding
        if hparams['use_spk_embed']:
            spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :]
        elif hparams['use_spk_id']:
            spk_embed_id = spk_embed
            if spk_embed_dur_id is None:
                spk_embed_dur_id = spk_embed_id
            if spk_embed_f0_id is None:
                spk_embed_f0_id = spk_embed_id
            spk_embed_0 = self.spk_embed_proj(spk_embed_id.to(hubert.device))[:, None, :]
            spk_embed_1 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :]
            spk_embed_2 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :]
            spk_embed = 1 * spk_embed_0 + 0 * spk_embed_1 + 0 * spk_embed_2
            spk_embed_dur = spk_embed_f0 = spk_embed
            if hparams['use_split_spk_id']:
                spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :]
                spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :]
        else:
            spk_embed_dur = spk_embed_f0 = spk_embed = 0

        ret['mel2ph'] = mel2ph

        decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])

        mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]])
        decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_)  # [B, T, H]

        tgt_nonpadding = (mel2ph > 0).float()[:, :, None]

        # add pitch and energy embed
        pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding
        if hparams['use_pitch_embed']:
            pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding
            decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph)
        if hparams['use_energy_embed']:
            decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret)

        ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
        return ret

    def add_dur(self, dur_input, mel2ph, hubert, ret):
        src_padding = (hubert == 0).all(-1)
        dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach())
        if mel2ph is None:
            dur, xs = self.dur_predictor.inference(dur_input, src_padding)
            ret['dur'] = xs
            ret['dur_choice'] = dur
            mel2ph = self.length_regulator(dur, src_padding).detach()
        else:
            ret['dur'] = self.dur_predictor(dur_input, src_padding)
        ret['mel2ph'] = mel2ph
        return mel2ph

    def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs):
        x = decoder_inp  # [B, T, H]
        x = self.mel_out(x)
        return x * tgt_nonpadding

    def out2mel(self, out):
        return out

    def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
        decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())

        pitch_padding = (mel2ph == 0)
        ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding)
        if pitch_padding is not None:
            f0[pitch_padding] = 0

        pitch = f0_to_coarse(f0_denorm, hparams)  # start from 0
        ret['pitch_pred'] = pitch.unsqueeze(-1)
        pitch_embedding = self.pitch_embed(pitch)
        return pitch_embedding

    def add_energy(self, decoder_inp, energy, ret):
        decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach())
        ret['energy_pred'] = energy  # energy_pred = self.energy_predictor(decoder_inp)[:, :, 0]
        energy = torch.clamp(energy * 256 // 4, max=255).long()  # energy_to_coarse
        energy_embedding = self.energy_embed(energy)
        return energy_embedding

    @staticmethod
    def mel_norm(x):
        return (x + 5.5) / (6.3 / 2) - 1

    @staticmethod
    def mel_denorm(x):
        return (x + 1) * (6.3 / 2) - 5.5