Spaces:
Build error
Build error
import os | |
from multiprocessing.pool import Pool | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import torch.distributions | |
import torch.nn.functional as F | |
import torch.optim | |
import torch.utils.data | |
from tqdm import tqdm | |
import utils | |
from modules.commons.ssim import ssim | |
from modules.diff.diffusion import GaussianDiffusion | |
from modules.diff.net import DiffNet | |
from modules.vocoders.nsf_hifigan import NsfHifiGAN, nsf_hifigan | |
from preprocessing.hubertinfer import HubertEncoder | |
from preprocessing.process_pipeline import get_pitch_parselmouth | |
from training.base_task import BaseTask | |
from utils import audio | |
from utils.hparams import hparams | |
from utils.pitch_utils import denorm_f0 | |
from utils.pl_utils import data_loader | |
from utils.plot import spec_to_figure, f0_to_figure | |
from utils.svc_utils import SvcDataset | |
matplotlib.use('Agg') | |
DIFF_DECODERS = { | |
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']) | |
} | |
class SvcTask(BaseTask): | |
def __init__(self): | |
super(SvcTask, self).__init__() | |
self.vocoder = NsfHifiGAN() | |
self.phone_encoder = HubertEncoder(hparams['hubert_path']) | |
self.saving_result_pool = None | |
self.saving_results_futures = None | |
self.stats = {} | |
self.dataset_cls = SvcDataset | |
self.mse_loss_fn = torch.nn.MSELoss() | |
mel_losses = hparams['mel_loss'].split("|") | |
self.loss_and_lambda = {} | |
for i, l in enumerate(mel_losses): | |
if l == '': | |
continue | |
if ':' in l: | |
l, lbd = l.split(":") | |
lbd = float(lbd) | |
else: | |
lbd = 1.0 | |
self.loss_and_lambda[l] = lbd | |
print("| Mel losses:", self.loss_and_lambda) | |
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None, | |
required_batch_size_multiple=-1, endless=False, batch_by_size=True): | |
devices_cnt = torch.cuda.device_count() | |
if devices_cnt == 0: | |
devices_cnt = 1 | |
if required_batch_size_multiple == -1: | |
required_batch_size_multiple = devices_cnt | |
def shuffle_batches(batches): | |
np.random.shuffle(batches) | |
return batches | |
if max_tokens is not None: | |
max_tokens *= devices_cnt | |
if max_sentences is not None: | |
max_sentences *= devices_cnt | |
indices = dataset.ordered_indices() | |
if batch_by_size: | |
batch_sampler = utils.batch_by_size( | |
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, | |
required_batch_size_multiple=required_batch_size_multiple, | |
) | |
else: | |
batch_sampler = [] | |
for i in range(0, len(indices), max_sentences): | |
batch_sampler.append(indices[i:i + max_sentences]) | |
if shuffle: | |
batches = shuffle_batches(list(batch_sampler)) | |
if endless: | |
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))] | |
else: | |
batches = batch_sampler | |
if endless: | |
batches = [b for _ in range(1000) for b in batches] | |
num_workers = dataset.num_workers | |
if self.trainer.use_ddp: | |
num_replicas = dist.get_world_size() | |
rank = dist.get_rank() | |
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0] | |
return torch.utils.data.DataLoader(dataset, | |
collate_fn=dataset.collater, | |
batch_sampler=batches, | |
num_workers=num_workers, | |
pin_memory=False) | |
def test_start(self): | |
self.saving_result_pool = Pool(8) | |
self.saving_results_futures = [] | |
self.vocoder = nsf_hifigan | |
def test_end(self, outputs): | |
self.saving_result_pool.close() | |
[f.get() for f in tqdm(self.saving_results_futures)] | |
self.saving_result_pool.join() | |
return {} | |
def train_dataloader(self): | |
train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True) | |
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences, | |
endless=hparams['endless_ds']) | |
def val_dataloader(self): | |
valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False) | |
return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences) | |
def test_dataloader(self): | |
test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False) | |
return self.build_dataloader(test_dataset, False, self.max_eval_tokens, | |
self.max_eval_sentences, batch_by_size=False) | |
def build_model(self): | |
self.build_tts_model() | |
if hparams['load_ckpt'] != '': | |
self.load_ckpt(hparams['load_ckpt'], strict=True) | |
utils.print_arch(self.model) | |
return self.model | |
def build_tts_model(self): | |
mel_bins = hparams['audio_num_mel_bins'] | |
self.model = GaussianDiffusion( | |
phone_encoder=self.phone_encoder, | |
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), | |
timesteps=hparams['timesteps'], | |
K_step=hparams['K_step'], | |
loss_type=hparams['diff_loss_type'], | |
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], | |
) | |
def build_optimizer(self, model): | |
self.optimizer = optimizer = torch.optim.AdamW( | |
filter(lambda p: p.requires_grad, model.parameters()), | |
lr=hparams['lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
weight_decay=hparams['weight_decay']) | |
return optimizer | |
def run_model(model, sample, return_output=False, infer=False): | |
''' | |
steps: | |
1. run the full model, calc the main loss | |
2. calculate loss for dur_predictor, pitch_predictor, energy_predictor | |
''' | |
hubert = sample['hubert'] # [B, T_t,H] | |
target = sample['mels'] # [B, T_s, 80] | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
energy = sample.get('energy') | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
output = model(hubert, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer) | |
losses = {} | |
if 'diff_loss' in output: | |
losses['mel'] = output['diff_loss'] | |
if not return_output: | |
return losses | |
else: | |
return losses, output | |
def build_scheduler(self, optimizer): | |
return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5) | |
def _training_step(self, sample, batch_idx, _): | |
log_outputs = self.run_model(self.model, sample) | |
total_loss = sum([v for v in log_outputs.values() if isinstance(v, torch.Tensor) and v.requires_grad]) | |
log_outputs['batch_size'] = sample['hubert'].size()[0] | |
log_outputs['lr'] = self.scheduler.get_lr()[0] | |
return total_loss, log_outputs | |
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): | |
if optimizer is None: | |
return | |
optimizer.step() | |
optimizer.zero_grad() | |
if self.scheduler is not None: | |
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
hubert = sample['hubert'] # [B, T_t] | |
energy = sample.get('energy') | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
mel2ph = sample['mel2ph'] | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = utils.tensors_to_scalars(outputs) | |
if batch_idx < hparams['num_valid_plots']: | |
model_out = self.model( | |
hubert, spk_embed=spk_embed, mel2ph=mel2ph, f0=sample['f0'], uv=sample['uv'], energy=energy, | |
ref_mels=None, infer=True | |
) | |
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) | |
pred_f0 = model_out.get('f0_denorm') | |
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') | |
if hparams['use_pitch_embed']: | |
self.plot_pitch(batch_idx, sample, model_out) | |
return outputs | |
def _validation_end(self, outputs): | |
all_losses_meter = { | |
'total_loss': utils.AvgrageMeter(), | |
} | |
for output in outputs: | |
n = output['nsamples'] | |
for k, v in output['losses'].items(): | |
if k not in all_losses_meter: | |
all_losses_meter[k] = utils.AvgrageMeter() | |
all_losses_meter[k].update(v, n) | |
all_losses_meter['total_loss'].update(output['total_loss'], n) | |
return {k: round(v.avg, 4) for k, v in all_losses_meter.items()} | |
############ | |
# losses | |
############ | |
def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None): | |
if mel_mix_loss is None: | |
for loss_name, lbd in self.loss_and_lambda.items(): | |
if 'l1' == loss_name: | |
l = self.l1_loss(mel_out, target) | |
elif 'mse' == loss_name: | |
raise NotImplementedError | |
elif 'ssim' == loss_name: | |
l = self.ssim_loss(mel_out, target) | |
elif 'gdl' == loss_name: | |
raise NotImplementedError | |
losses[f'{loss_name}{postfix}'] = l * lbd | |
else: | |
raise NotImplementedError | |
def l1_loss(self, decoder_output, target): | |
# decoder_output : B x T x n_mel | |
# target : B x T x n_mel | |
l1_loss = F.l1_loss(decoder_output, target, reduction='none') | |
weights = self.weights_nonzero_speech(target) | |
l1_loss = (l1_loss * weights).sum() / weights.sum() | |
return l1_loss | |
def ssim_loss(self, decoder_output, target, bias=6.0): | |
# decoder_output : B x T x n_mel | |
# target : B x T x n_mel | |
assert decoder_output.shape == target.shape | |
weights = self.weights_nonzero_speech(target) | |
decoder_output = decoder_output[:, None] + bias | |
target = target[:, None] + bias | |
ssim_loss = 1 - ssim(decoder_output, target, size_average=False) | |
ssim_loss = (ssim_loss * weights).sum() / weights.sum() | |
return ssim_loss | |
def add_pitch_loss(self, output, sample, losses): | |
if hparams['pitch_type'] == 'ph': | |
nonpadding = (sample['txt_tokens'] != 0).float() | |
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss | |
losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'], | |
reduction='none') * nonpadding).sum() \ | |
/ nonpadding.sum() * hparams['lambda_f0'] | |
return | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
nonpadding = (mel2ph != 0).float() | |
if hparams['pitch_type'] == 'frame': | |
self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding) | |
def add_f0_loss(p_pred, f0, uv, losses, nonpadding): | |
assert p_pred[..., 0].shape == f0.shape | |
if hparams['use_uv']: | |
assert p_pred[..., 1].shape == uv.shape | |
losses['uv'] = (F.binary_cross_entropy_with_logits( | |
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \ | |
/ nonpadding.sum() * hparams['lambda_uv'] | |
nonpadding = nonpadding * (uv == 0).float() | |
f0_pred = p_pred[:, :, 0] | |
if hparams['pitch_loss'] in ['l1', 'l2']: | |
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss | |
losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \ | |
/ nonpadding.sum() * hparams['lambda_f0'] | |
elif hparams['pitch_loss'] == 'ssim': | |
return NotImplementedError | |
def add_energy_loss(energy_pred, energy, losses): | |
nonpadding = (energy != 0).float() | |
loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum() | |
loss = loss * hparams['lambda_energy'] | |
losses['e'] = loss | |
############ | |
# validation plots | |
############ | |
def plot_mel(self, batch_idx, spec, spec_out, name=None): | |
spec_cat = torch.cat([spec, spec_out], -1) | |
name = f'mel_{batch_idx}' if name is None else name | |
vmin = hparams['mel_vmin'] | |
vmax = hparams['mel_vmax'] | |
self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step) | |
def plot_pitch(self, batch_idx, sample, model_out): | |
f0 = sample['f0'] | |
if hparams['pitch_type'] == 'ph': | |
mel2ph = sample['mel2ph'] | |
f0 = self.expand_f0_ph(f0, mel2ph) | |
f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph) | |
self.logger.experiment.add_figure( | |
f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step) | |
return | |
f0 = denorm_f0(f0, sample['uv'], hparams) | |
if hparams['pitch_type'] == 'frame': | |
pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], sample['uv'], hparams) | |
self.logger.experiment.add_figure( | |
f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step) | |
def plot_wav(self, batch_idx, gt_wav, wav_out, is_mel=False, gt_f0=None, f0=None, name=None): | |
gt_wav = gt_wav[0].cpu().numpy() | |
wav_out = wav_out[0].cpu().numpy() | |
gt_f0 = gt_f0[0].cpu().numpy() | |
f0 = f0[0].cpu().numpy() | |
if is_mel: | |
gt_wav = self.vocoder.spec2wav(gt_wav, f0=gt_f0) | |
wav_out = self.vocoder.spec2wav(wav_out, f0=f0) | |
self.logger.experiment.add_audio(f'gt_{batch_idx}', gt_wav, sample_rate=hparams['audio_sample_rate'], | |
global_step=self.global_step) | |
self.logger.experiment.add_audio(f'wav_{batch_idx}', wav_out, sample_rate=hparams['audio_sample_rate'], | |
global_step=self.global_step) | |
############ | |
# infer | |
############ | |
def test_step(self, sample, batch_idx): | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
hubert = sample['hubert'] | |
ref_mels = None | |
mel2ph = sample['mel2ph'] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
outputs = self.model(hubert, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, | |
infer=True) | |
sample['outputs'] = self.model.out2mel(outputs['mel_out']) | |
sample['mel2ph_pred'] = outputs['mel2ph'] | |
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) | |
sample['f0_pred'] = outputs.get('f0_denorm') | |
return self.after_infer(sample) | |
def after_infer(self, predictions): | |
if self.saving_result_pool is None and not hparams['profile_infer']: | |
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16)) | |
self.saving_results_futures = [] | |
predictions = utils.unpack_dict_to_list(predictions) | |
t = tqdm(predictions) | |
for num_predictions, prediction in enumerate(t): | |
for k, v in prediction.items(): | |
if type(v) is torch.Tensor: | |
prediction[k] = v.cpu().numpy() | |
item_name = prediction.get('item_name') | |
# remove paddings | |
mel_gt = prediction["mels"] | |
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0 | |
mel_gt = mel_gt[mel_gt_mask] | |
mel_pred = prediction["outputs"] | |
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0 | |
mel_pred = mel_pred[mel_pred_mask] | |
mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax']) | |
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax']) | |
f0_gt = prediction.get("f0") | |
f0_pred = f0_gt | |
if f0_pred is not None: | |
f0_gt = f0_gt[mel_gt_mask] | |
if len(f0_pred) > len(mel_pred_mask): | |
f0_pred = f0_pred[:len(mel_pred_mask)] | |
f0_pred = f0_pred[mel_pred_mask] | |
gen_dir = os.path.join(hparams['work_dir'], | |
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') | |
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) | |
if not hparams['profile_infer']: | |
os.makedirs(gen_dir, exist_ok=True) | |
os.makedirs(f'{gen_dir}/wavs', exist_ok=True) | |
os.makedirs(f'{gen_dir}/plot', exist_ok=True) | |
os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True) | |
os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True) | |
self.saving_results_futures.append( | |
self.saving_result_pool.apply_async(self.save_result, args=[ | |
wav_pred, mel_pred, 'P', item_name, gen_dir])) | |
if mel_gt is not None and hparams['save_gt']: | |
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) | |
self.saving_results_futures.append( | |
self.saving_result_pool.apply_async(self.save_result, args=[ | |
wav_gt, mel_gt, 'G', item_name, gen_dir])) | |
if hparams['save_f0']: | |
import matplotlib.pyplot as plt | |
f0_pred_ = f0_pred | |
f0_gt_, _ = get_pitch_parselmouth(wav_gt, mel_gt, hparams) | |
fig = plt.figure() | |
plt.plot(f0_pred_, label=r'$f0_P$') | |
plt.plot(f0_gt_, label=r'$f0_G$') | |
plt.legend() | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') | |
plt.close(fig) | |
t.set_description( | |
f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") | |
else: | |
if 'gen_wav_time' not in self.stats: | |
self.stats['gen_wav_time'] = 0 | |
self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate'] | |
print('gen_wav_time: ', self.stats['gen_wav_time']) | |
return {} | |
def save_result(wav_out, mel, prefix, item_name, gen_dir): | |
item_name = item_name.replace('/', '-') | |
base_fn = f'[{item_name}][{prefix}]' | |
base_fn += ('-' + hparams['exp_name']) | |
np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel) | |
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', 24000, # hparams['audio_sample_rate'], | |
norm=hparams['out_wav_norm']) | |
fig = plt.figure(figsize=(14, 10)) | |
spec_vmin = hparams['mel_vmin'] | |
spec_vmax = hparams['mel_vmax'] | |
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) | |
fig.colorbar(heatmap) | |
f0, _ = get_pitch_parselmouth(wav_out, mel, hparams) | |
f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0) | |
plt.plot(f0, c='white', linewidth=1, alpha=0.6) | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000) | |
plt.close(fig) | |
############## | |
# utils | |
############## | |
def expand_f0_ph(f0, mel2ph): | |
f0 = denorm_f0(f0, None, hparams) | |
f0 = F.pad(f0, [1, 0]) | |
f0 = torch.gather(f0, 1, mel2ph) # [B, T_mel] | |
return f0 | |
def weights_nonzero_speech(target): | |
# target : B x T x mel | |
# Assign weight 1.0 to all labels except for padding (id=0). | |
dim = target.size(-1) | |
return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim) | |