Spaces:
Build error
Build error
""" | |
Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim | |
""" | |
from math import exp | |
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def gaussian(window_size, sigma): | |
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) | |
return gauss / gauss.sum() | |
def create_window(window_size, channel): | |
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) | |
return window | |
def _ssim(img1, img2, window, window_size, channel, size_average=True): | |
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq | |
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 | |
C1 = 0.01 ** 2 | |
C2 = 0.03 ** 2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
if size_average: | |
return ssim_map.mean() | |
else: | |
return ssim_map.mean(1) | |
class SSIM(torch.nn.Module): | |
def __init__(self, window_size=11, size_average=True): | |
super(SSIM, self).__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.channel = 1 | |
self.window = create_window(window_size, self.channel) | |
def forward(self, img1, img2): | |
(_, channel, _, _) = img1.size() | |
if channel == self.channel and self.window.data.type() == img1.data.type(): | |
window = self.window | |
else: | |
window = create_window(self.window_size, channel) | |
if img1.is_cuda: | |
window = window.cuda(img1.get_device()) | |
window = window.type_as(img1) | |
self.window = window | |
self.channel = channel | |
return _ssim(img1, img2, window, self.window_size, channel, self.size_average) | |
window = None | |
def ssim(img1, img2, window_size=11, size_average=True): | |
(_, channel, _, _) = img1.size() | |
global window | |
if window is None: | |
window = create_window(window_size, channel) | |
if img1.is_cuda: | |
window = window.cuda(img1.get_device()) | |
window = window.type_as(img1) | |
return _ssim(img1, img2, window, window_size, channel, size_average) | |