Spaces:
Build error
Build error
import io | |
from pathlib import Path | |
import numpy as np | |
import soundfile | |
from infer_tools import infer_tool | |
from infer_tools import slicer | |
from infer_tools.infer_tool import Svc | |
from utils.hparams import hparams | |
def run_clip(raw_audio_path, svc_model, key, acc, use_crepe, spk_id=0, auto_key=False, out_path=None, slice_db=-40, | |
**kwargs): | |
print(f'code version:2023-01-22') | |
clean_name = Path(raw_audio_path).name.split(".")[0] | |
infer_tool.format_wav(raw_audio_path) | |
wav_path = Path(raw_audio_path).with_suffix('.wav') | |
key = svc_model.evaluate_key(wav_path, key, auto_key) | |
chunks = slicer.cut(wav_path, db_thresh=slice_db) | |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) | |
count = 0 | |
f0_tst, f0_pred, audio = [], [], [] | |
for (slice_tag, data) in audio_data: | |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') | |
length = int(np.ceil(len(data) / audio_sr * hparams['audio_sample_rate'])) | |
raw_path = io.BytesIO() | |
soundfile.write(raw_path, data, audio_sr, format="wav") | |
raw_path.seek(0) | |
if slice_tag: | |
print('jump empty segment') | |
_f0_tst, _f0_pred, _audio = ( | |
np.zeros(int(np.ceil(length / hparams['hop_size']))), | |
np.zeros(int(np.ceil(length / hparams['hop_size']))), | |
np.zeros(length)) | |
else: | |
_f0_tst, _f0_pred, _audio = svc_model.infer(raw_path, spk_id=spk_id, key=key, acc=acc, use_crepe=use_crepe) | |
fix_audio = np.zeros(length) | |
fix_audio[:] = np.mean(_audio) | |
fix_audio[:len(_audio)] = _audio[0 if len(_audio) < len(fix_audio) else len(_audio) - len(fix_audio):] | |
f0_tst.extend(_f0_tst) | |
f0_pred.extend(_f0_pred) | |
audio.extend(list(fix_audio)) | |
count += 1 | |
if out_path is None: | |
out_path = f'./results/{clean_name}_{key}key_{project_name}_{hparams["residual_channels"]}_{hparams["residual_layers"]}_{int(step / 1000)}k_{accelerate}x.{kwargs["format"]}' | |
soundfile.write(out_path, audio, hparams["audio_sample_rate"], 'PCM_16', format=out_path.split('.')[-1]) | |
return np.array(f0_tst), np.array(f0_pred), audio | |
if __name__ == '__main__': | |
# 工程文件夹名,训练时用的那个 | |
project_name = "open-aqua" | |
model_path = f'./checkpoints/{project_name}/model_ckpt_steps_90000.ckpt' | |
config_path = f'./checkpoints/{project_name}/config.yaml' | |
# 支持多个wav/ogg文件,放在raw文件夹下,带扩展名 | |
file_names = ["横竖撇点折-main-2key.wav"] | |
spk_id = "single" | |
# 自适应变调(仅支持单人模型) | |
auto_key = False | |
trans = [0] # 音高调整,支持正负(半音),数量与上一行对应,不足的自动按第一个移调参数补齐 | |
# 加速倍数 | |
accelerate = 1 | |
hubert_gpu = True | |
wav_format = 'wav' | |
step = int(model_path.split("_")[-1].split(".")[0]) | |
# 下面不动 | |
infer_tool.mkdir(["./raw", "./results"]) | |
infer_tool.fill_a_to_b(trans, file_names) | |
model = Svc(project_name, config_path, hubert_gpu, model_path, onnx=False) | |
for f_name, tran in zip(file_names, trans): | |
if "." not in f_name: | |
f_name += ".wav" | |
audio_path = f"./raw/{f_name}" | |
run_clip(raw_audio_path=audio_path, svc_model=model, key=tran, acc=accelerate, use_crepe=False, | |
spk_id=spk_id, auto_key=auto_key, project_name=project_name, format=wav_format) | |