ChrisPreston's picture
Update infer_tools/infer_tool.py
e5442c4
import json
import os
import time
from io import BytesIO
from pathlib import Path
import librosa
import numpy as np
import soundfile
import torch
import utils
from infer_tools.f0_static import compare_pitch, static_f0_time
from modules.diff.diffusion import GaussianDiffusion
from modules.diff.net import DiffNet
from modules.vocoders.nsf_hifigan import NsfHifiGAN
from preprocessing.hubertinfer import HubertEncoder
from preprocessing.process_pipeline import File2Batch, get_pitch_parselmouth
from utils.hparams import hparams, set_hparams
from utils.pitch_utils import denorm_f0, norm_interp_f0
def timeit(func):
def run(*args, **kwargs):
t = time.time()
res = func(*args, **kwargs)
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
return res
return run
def format_wav(audio_path):
if Path(audio_path).suffix == '.wav':
return
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
def fill_a_to_b(a, b):
if len(a) < len(b):
for _ in range(0, len(b) - len(a)):
a.append(a[0])
def get_end_file(dir_path, end):
file_lists = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
return file_lists
def mkdir(paths: list):
for path in paths:
if not os.path.exists(path):
os.mkdir(path)
class Svc:
def __init__(self, project_name, config_name, hubert_gpu, model_path, onnx=False):
self.project_name = project_name
self.DIFF_DECODERS = {
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']),
}
self.model_path = model_path
self.dev = torch.device("cpu")
self._ = set_hparams(config=config_name, exp_name=self.project_name, infer=True,
reset=True, hparams_str='', print_hparams=False)
hparams['hubert_gpu'] = hubert_gpu
self.hubert = HubertEncoder(hparams['hubert_path'], onnx=onnx)
self.model = GaussianDiffusion(
phone_encoder=self.hubert,
out_dims=hparams['audio_num_mel_bins'],
denoise_fn=self.DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
timesteps=hparams['timesteps'],
K_step=hparams['K_step'],
loss_type=hparams['diff_loss_type'],
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
)
utils.load_ckpt(self.model, self.model_path, 'model', force=True, strict=True)
self.model.to(self.dev)
self.vocoder = NsfHifiGAN()
def infer(self, in_path, key, acc, spk_id=0, use_crepe=True, singer=False):
batch = self.pre(in_path, acc, spk_id, use_crepe)
batch['f0'] = batch['f0'] + (key / 12)
batch['f0'][batch['f0'] > np.log2(hparams['f0_max'])] = 0
@timeit
def diff_infer():
spk_embed = batch.get('spk_embed') if not hparams['use_spk_id'] else batch.get('spk_ids')
energy = batch.get('energy').cpu() if batch.get('energy') else None
if spk_embed is None:
spk_embed = torch.LongTensor([0]).cpu()
diff_outputs = self.model(
hubert=batch['hubert'].cpu(), spk_embed_id=spk_embed.cpu(), mel2ph=batch['mel2ph'].cpu(),
f0=batch['f0'].cpu(), energy=energy, ref_mels=batch["mels"].cpu(), infer=True)
return diff_outputs
outputs = diff_infer()
batch['outputs'] = outputs['mel_out']
batch['mel2ph_pred'] = outputs['mel2ph']
batch['f0_gt'] = denorm_f0(batch['f0'], batch['uv'], hparams)
batch['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(batch, singer, in_path)
@timeit
def after_infer(self, prediction, singer, in_path):
for k, v in prediction.items():
if type(v) is torch.Tensor:
prediction[k] = v.cpu().numpy()
# remove paddings
mel_gt = prediction["mels"]
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
mel_pred = prediction["outputs"]
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
mel_pred = mel_pred[mel_pred_mask]
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
f0_gt = prediction.get("f0_gt")
f0_pred = prediction.get("f0_pred")
if f0_pred is not None:
f0_gt = f0_gt[mel_gt_mask]
if len(f0_pred) > len(mel_pred_mask):
f0_pred = f0_pred[:len(mel_pred_mask)]
f0_pred = f0_pred[mel_pred_mask]
torch.cuda.is_available() and torch.cuda.empty_cache()
if singer:
data_path = in_path.replace("batch", "singer_data")
mel_path = data_path[:-4] + "_mel.npy"
f0_path = data_path[:-4] + "_f0.npy"
np.save(mel_path, mel_pred)
np.save(f0_path, f0_pred)
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
return f0_gt, f0_pred, wav_pred
def pre(self, wav_fn, accelerate, spk_id=0, use_crepe=True):
if isinstance(wav_fn, BytesIO):
item_name = self.project_name
else:
song_info = wav_fn.split('/')
item_name = song_info[-1].split('.')[-2]
temp_dict = {'wav_fn': wav_fn, 'spk_id': spk_id, 'id': 0}
temp_dict = File2Batch.temporary_dict2processed_input(item_name, temp_dict, self.hubert, infer=True,
use_crepe=use_crepe)
hparams['pndm_speedup'] = accelerate
batch = File2Batch.processed_input2batch([getitem(temp_dict)])
return batch
def evaluate_key(self, wav_path, key, auto_key):
if "f0_static" in hparams.keys():
f0_static = json.loads(hparams['f0_static'])
wav, mel = self.vocoder.wav2spec(wav_path)
input_f0 = get_pitch_parselmouth(wav, mel, hparams)[0]
pitch_time_temp = static_f0_time(input_f0)
eval_dict = {}
for trans_key in range(-12, 12):
eval_dict[trans_key] = compare_pitch(f0_static, pitch_time_temp, trans_key=trans_key)
sort_key = sorted(eval_dict, key=eval_dict.get, reverse=True)[:5]
print(f"推荐移调:{sort_key}")
if auto_key:
print(f"自动变调已启用,您的输入key被{sort_key[0]}key覆盖,控制参数为auto_key")
return sort_key[0]
else:
print("config缺少f0_staic,无法使用自动变调,可通过infer_tools/data_static添加")
return key
def getitem(item):
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel']).cpu()[:max_frames]
mel2ph = torch.LongTensor(item['mel2ph']).cpu()[:max_frames] if 'mel2ph' in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']]).cpu()
pitch = torch.LongTensor(item.get("pitch")).cpu()[:max_frames]
sample = {
"id": item['id'],
"spk_id": item['spk_id'],
"item_name": item['item_name'],
"hubert": hubert,
"mel": spec,
"pitch": pitch,
"f0": f0,
"uv": uv,
"mel2ph": mel2ph,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_energy_embed']:
sample['energy'] = item['energy']
return sample