ChrisPreston's picture
Upload 95 files
93f4bab
import os.path
from io import BytesIO
from pathlib import Path
import numpy as np
import onnxruntime as ort
import torch
from modules.hubert.cn_hubert import load_cn_model, get_cn_hubert_units
from modules.hubert.hubert_model import hubert_soft, get_units
from modules.hubert.hubert_onnx import get_onnx_units
from utils.hparams import hparams
class HubertEncoder:
def __init__(self, pt_path='checkpoints/hubert/hubert_soft.pt', hubert_mode='', onnx=False):
self.hubert_mode = hubert_mode
self.onnx = onnx
if 'use_cn_hubert' not in hparams.keys():
hparams['use_cn_hubert'] = False
if hparams['use_cn_hubert'] or self.hubert_mode == 'cn_hubert':
pt_path = "checkpoints/cn_hubert/chinese-hubert-base-fairseq-ckpt.pt"
self.dev = torch.device("cuda")
self.hbt_model = load_cn_model(pt_path)
else:
if onnx:
self.hbt_model = ort.InferenceSession("onnx/hubert_soft.onnx",
providers=['CUDAExecutionProvider', 'CPUExecutionProvider', ])
else:
pt_path = list(Path(pt_path).parent.rglob('*.pt'))[0]
if 'hubert_gpu' in hparams.keys():
self.use_gpu = hparams['hubert_gpu']
else:
self.use_gpu = True
self.dev = torch.device("cuda" if self.use_gpu and torch.cuda.is_available() else "cpu")
self.hbt_model = hubert_soft(str(pt_path)).to(self.dev)
print(f"| load 'model' from '{pt_path}'")
def encode(self, wav_path):
if isinstance(wav_path, BytesIO):
npy_path = ""
wav_path.seek(0)
else:
npy_path = Path(wav_path).with_suffix('.npy')
if os.path.exists(npy_path):
units = np.load(str(npy_path))
elif self.onnx:
units = get_onnx_units(self.hbt_model, wav_path).squeeze(0)
elif hparams['use_cn_hubert'] or self.hubert_mode == 'cn_hubert':
units = get_cn_hubert_units(self.hbt_model, wav_path, self.dev).cpu().numpy()[0]
else:
units = get_units(self.hbt_model, wav_path, self.dev).cpu().numpy()[0]
return units # [T,256]