import torch from modules.commons.common_layers import * from modules.commons.common_layers import Embedding from modules.commons.common_layers import SinusoidalPositionalEmbedding from utils.hparams import hparams from utils.pitch_utils import f0_to_coarse, denorm_f0 class LayerNorm(torch.nn.LayerNorm): """Layer normalization module. :param int nout: output dim size :param int dim: dimension to be normalized """ def __init__(self, nout, dim=-1): """Construct an LayerNorm object.""" super(LayerNorm, self).__init__(nout, eps=1e-12) self.dim = dim def forward(self, x): """Apply layer normalization. :param torch.Tensor x: input tensor :return: layer normalized tensor :rtype torch.Tensor """ if self.dim == -1: return super(LayerNorm, self).forward(x) return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) class PitchPredictor(torch.nn.Module): def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5, dropout_rate=0.1, padding='SAME'): """Initilize pitch predictor module. Args: idim (int): Input dimension. n_layers (int, optional): Number of convolutional layers. n_chans (int, optional): Number of channels of convolutional layers. kernel_size (int, optional): Kernel size of convolutional layers. dropout_rate (float, optional): Dropout rate. """ super(PitchPredictor, self).__init__() self.conv = torch.nn.ModuleList() self.kernel_size = kernel_size self.padding = padding for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential( torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2) if padding == 'SAME' else (kernel_size - 1, 0), 0), torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0), torch.nn.ReLU(), LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate) )] self.linear = torch.nn.Linear(n_chans, odim) self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096) self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) def forward(self, xs): """ :param xs: [B, T, H] :return: [B, T, H] """ positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0]) xs = xs + positions xs = xs.transpose(1, -1) # (B, idim, Tmax) for f in self.conv: xs = f(xs) # (B, C, Tmax) # NOTE: calculate in log domain xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H) return xs class SvcEncoder(nn.Module): def __init__(self, dictionary, out_dims=None): super().__init__() # self.dictionary = dictionary self.padding_idx = 0 self.hidden_size = hparams['hidden_size'] self.out_dims = out_dims if out_dims is None: self.out_dims = hparams['audio_num_mel_bins'] self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True) predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size if hparams['use_pitch_embed']: self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx) self.pitch_predictor = PitchPredictor( self.hidden_size, n_chans=predictor_hidden, n_layers=hparams['predictor_layers'], dropout_rate=hparams['predictor_dropout'], odim=2 if hparams['pitch_type'] == 'frame' else 1, padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel']) if hparams['use_energy_embed']: self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx) if hparams['use_spk_id']: self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size) if hparams['use_split_spk_id']: self.spk_embed_f0 = Embedding(hparams['num_spk'], self.hidden_size) self.spk_embed_dur = Embedding(hparams['num_spk'], self.hidden_size) elif hparams['use_spk_embed']: self.spk_embed_proj = Linear(256, self.hidden_size, bias=True) def forward(self, hubert, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=True, spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs): ret = {} encoder_out = hubert src_nonpadding = (hubert != 0).any(-1)[:, :, None] # add ref style embed # Not implemented # variance encoder var_embed = 0 # encoder_out_dur denotes encoder outputs for duration predictor # in speech adaptation, duration predictor use old speaker embedding if hparams['use_spk_embed']: spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] elif hparams['use_spk_id']: spk_embed_id = spk_embed if spk_embed_dur_id is None: spk_embed_dur_id = spk_embed_id if spk_embed_f0_id is None: spk_embed_f0_id = spk_embed_id spk_embed_0 = self.spk_embed_proj(spk_embed_id.to(hubert.device))[:, None, :] spk_embed_1 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :] spk_embed_2 = self.spk_embed_proj(torch.LongTensor([0]).to(hubert.device))[:, None, :] spk_embed = 1 * spk_embed_0 + 0 * spk_embed_1 + 0 * spk_embed_2 spk_embed_dur = spk_embed_f0 = spk_embed if hparams['use_split_spk_id']: spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :] spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :] else: spk_embed_dur = spk_embed_f0 = spk_embed = 0 ret['mel2ph'] = mel2ph decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H] tgt_nonpadding = (mel2ph > 0).float()[:, :, None] # add pitch and energy embed pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding if hparams['use_pitch_embed']: pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) if hparams['use_energy_embed']: decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret) ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding return ret def add_dur(self, dur_input, mel2ph, hubert, ret): src_padding = (hubert == 0).all(-1) dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach()) if mel2ph is None: dur, xs = self.dur_predictor.inference(dur_input, src_padding) ret['dur'] = xs ret['dur_choice'] = dur mel2ph = self.length_regulator(dur, src_padding).detach() else: ret['dur'] = self.dur_predictor(dur_input, src_padding) ret['mel2ph'] = mel2ph return mel2ph def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs): x = decoder_inp # [B, T, H] x = self.mel_out(x) return x * tgt_nonpadding def out2mel(self, out): return out def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None): decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) pitch_padding = (mel2ph == 0) ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding) if pitch_padding is not None: f0[pitch_padding] = 0 pitch = f0_to_coarse(f0_denorm, hparams) # start from 0 ret['pitch_pred'] = pitch.unsqueeze(-1) pitch_embedding = self.pitch_embed(pitch) return pitch_embedding def add_energy(self, decoder_inp, energy, ret): decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) ret['energy_pred'] = energy # energy_pred = self.energy_predictor(decoder_inp)[:, :, 0] energy = torch.clamp(energy * 256 // 4, max=255).long() # energy_to_coarse energy_embedding = self.energy_embed(energy) return energy_embedding @staticmethod def mel_norm(x): return (x + 5.5) / (6.3 / 2) - 1 @staticmethod def mel_denorm(x): return (x + 1) * (6.3 / 2) - 5.5