Spaces:
Sleeping
Sleeping
File size: 5,425 Bytes
e3a7134 260d83d e3a7134 f94ba49 e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 a34698d 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 260d83d e3a7134 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from emotion_extract import extract_wav
import numpy as np
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
hps = utils.get_hparams_from_file("./configs/vtubers.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint("./nene_final.pth", net_g, None)
all_emotions = np.load("all_emotions.npy")
emotion_dict = {
"小声": 2077,
"激动": 111,
"平静1": 434,
"平静2": 3554
}
import random
def tts(txt, emotion, sid=0):
stn_tst = get_text(txt, hps)
randsample = None
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.LongTensor([sid])
if type(emotion) ==int:
emo = torch.FloatTensor(all_emotions[emotion]).unsqueeze(0)
elif emotion == "random":
emo = torch.randn([1,1024])
elif emotion == "random_sample":
randint = random.randint(0, all_emotions.shape[0])
emo = torch.FloatTensor(all_emotions[randint]).unsqueeze(0)
randsample = randint
elif emotion.endswith("wav"):
import emotion_extract
emo = torch.FloatTensor(emotion_extract.extract_wav(emotion))
else:
emo = torch.FloatTensor(all_emotions[emotion_dict[emotion]]).unsqueeze(0)
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1, emo=emo)[0][0,0].data.float().numpy()
return audio, randsample
def tts1(text, emotion, sid=0):
if len(text) > 150:
return "Error: Text is too long", None
audio, _ = tts(text, emotion, sid)
return "Success", (hps.data.sampling_rate, audio)
def tts2(text, sid=0):
if len(text) > 150:
return "Error: Text is too long", None
audio, randsample = tts(text, "random_sample", sid)
return str(randsample), (hps.data.sampling_rate, audio)
def tts3(text, sample, sid=0):
if len(text) > 150:
return "Error: Text is too long", None
try:
audio, _ = tts(text, int(sample), sid)
return "Success", (hps.data.sampling_rate, audio)
except:
return "输入参数不为整数或其他错误", None
def tts4(refer_wav_path, text, sid=0):
audio, _ = tts(text, refer_wav_path, sid)
return "Success", (hps.data.sampling_rate, audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("使用预制情感合成"):
tts_spk_id = gr.Dropdown(label="speaker", choices=list(range(hps.data.n_speakers)), value=0)
tts_input1 = gr.TextArea(label="日语文本", value="こんにちは。私わあやちねねです。")
tts_input2 = gr.Dropdown(label="情感", choices=list(emotion_dict.keys()), value="平静1")
tts_submit = gr.Button("合成音频", variant="primary")
tts_output1 = gr.Textbox(label="Message")
tts_output2 = gr.Audio(label="Output")
tts_submit.click(tts1, [tts_input1, tts_input2, tts_spk_id], [tts_output1, tts_output2])
with gr.TabItem("随机抽取训练集样本作为情感参数"):
tts_spk_id = gr.Dropdown(label="speaker", choices=list(range(hps.data.n_speakers)), value=0)
tts_input1 = gr.TextArea(label="日语文本", value="こんにちは。私わあやちねねです。")
tts_submit = gr.Button("合成音频", variant="primary")
tts_output1 = gr.Textbox(label="随机样本id(可用于第三个tab中合成)")
tts_output2 = gr.Audio(label="Output")
tts_submit.click(tts2, [tts_input1, tts_spk_id], [tts_output1, tts_output2])
with gr.TabItem("使用情感样本id作为情感参数"):
tts_spk_id = gr.Dropdown(label="speaker", choices=list(range(hps.data.n_speakers)), value=0)
tts_input1 = gr.TextArea(label="日语文本", value="こんにちは。私わあやちねねです。")
tts_input2 = gr.Number(label="情感样本id", value=2004)
tts_submit = gr.Button("合成音频", variant="primary")
tts_output1 = gr.Textbox(label="Message")
tts_output2 = gr.Audio(label="Output")
tts_submit.click(tts3, [tts_input1, tts_input2, tts_spk_id], [tts_output1, tts_output2])
with gr.TabItem("使用参考音频作为情感参数"):
tts_spk_id = gr.Dropdown(label="speaker", choices=list(range(hps.data.n_speakers)), value=0)
tts_refer_wav = gr.File(label="参考音频")
tts_input1 = gr.TextArea(label="日语文本", value="こんにちは。私わあやちねねです。")
tts_submit = gr.Button("合成音频", variant="primary")
tts_output1 = gr.Textbox(label="Message")
tts_output2 = gr.Audio(label="Output")
tts_submit.click(tts4, [tts_refer_wav, tts_input1, tts_spk_id], [tts_output1, tts_output2])
app.launch()
|