Spaces:
Running
on
Zero
Running
on
Zero
CiaraRowles
commited on
Commit
•
5891366
1
Parent(s):
af168f5
Update controlnet/callable_functions.py
Browse files
controlnet/callable_functions.py
CHANGED
@@ -10,22 +10,14 @@ from transformers import AutoProcessor, SiglipVisionModel
|
|
10 |
|
11 |
|
12 |
|
13 |
-
def use_stylecode(model,image_path, prompt,negative_prompt, num_inference_steps, stylecode,image=None):
|
14 |
# Load and preprocess image
|
15 |
# Set up model components
|
16 |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
17 |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
18 |
|
19 |
-
noise_scheduler = DDIMScheduler(
|
20 |
-
num_train_timesteps=1000,
|
21 |
-
beta_start=0.00085,
|
22 |
-
beta_end=0.012,
|
23 |
-
beta_schedule="scaled_linear",
|
24 |
-
clip_sample=False,
|
25 |
-
set_alpha_to_one=False,
|
26 |
-
steps_offset=1,
|
27 |
-
)
|
28 |
|
|
|
29 |
stylecodes_model.load_model(model)
|
30 |
|
31 |
pipe = StableDiffusionPipelineXSv2.from_pretrained(
|
@@ -46,8 +38,10 @@ def use_stylecode(model,image_path, prompt,negative_prompt, num_inference_steps,
|
|
46 |
image = image.resize((512, 512))
|
47 |
|
48 |
# Set up generator with a fixed seed for reproducibility
|
49 |
-
seed
|
50 |
-
|
|
|
|
|
51 |
|
52 |
# Run the image through the pipeline with the specified prompt
|
53 |
output_images = pipe(
|
|
|
10 |
|
11 |
|
12 |
|
13 |
+
def use_stylecode(model,image_path, prompt,negative_prompt, num_inference_steps, stylecode,seed=None,image=None):
|
14 |
# Load and preprocess image
|
15 |
# Set up model components
|
16 |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", torch_dtype=torch.float16, device="cuda")
|
17 |
stylecodes_model = StyleCodesModel.from_unet(unet, size_ratio=1.0).to(dtype=torch.float16, device="cuda")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
print("running prompt = ",prompt, " negative_prompt = ",negative_prompt, " with code ", stylecode)
|
21 |
stylecodes_model.load_model(model)
|
22 |
|
23 |
pipe = StableDiffusionPipelineXSv2.from_pretrained(
|
|
|
38 |
image = image.resize((512, 512))
|
39 |
|
40 |
# Set up generator with a fixed seed for reproducibility
|
41 |
+
if seed is not None and not -1:
|
42 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
43 |
+
else:
|
44 |
+
generator = None
|
45 |
|
46 |
# Run the image through the pipeline with the specified prompt
|
47 |
output_images = pipe(
|