File size: 2,435 Bytes
ca1f33d ccca058 ca1f33d ccca058 ca1f33d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import torch
import torchvision.transforms as transforms
import torchvision.models as models
from joblib import load
from PIL import Image
import gradio as gr
import matplotlib.pyplot as plt
import io
# Transformation and device setup
device = torch.device("cpu")
data_transforms = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Load the Isolation Forest model
clf = load('Models/Anomaly_MSI_MSS_Isolation_Forest_model.joblib')
# Load feature extractor
feature_extractor_path = 'Models/feature_extractor.pth'
feature_extractor = models.resnet50(weights=None)
feature_extractor.fc = nn.Sequential()
feature_extractor.load_state_dict(torch.load(feature_extractor_path, map_location=device))
feature_extractor.to(device)
feature_extractor.eval()
# Load gastric classification model
GASTRIC_MODEL_PATH = 'Gastric_Models/the_resnet_50_model.pth'
model_ft = torch.load(GASTRIC_MODEL_PATH, map_location=device)
model_ft.to(device)
model_ft.eval()
# Anomaly detection and classification function
def classify_image(uploaded_image):
image = Image.open(io.BytesIO(uploaded_image.read())).convert('RGB')
input_image = data_transforms(image).unsqueeze(0).to(device)
# Anomaly detection
if is_anomaly(clf, feature_extractor):
return "Anomaly detected. Image will not be classified.", None
# Classification
with torch.no_grad():
outputs = model_ft(input_image)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
_, predicted = torch.max(outputs, 1)
predicted_class_index = predicted.item()
class_names = ['abnormal', 'normal']
predicted_class_name = class_names[predicted_class_index]
predicted_probability = probabilities[0][predicted_class_index].item() * 100
return f"Class: {predicted_class_name}, Probability: {predicted_probability:.2f}%", None
iface = gr.Interface(
fn=classify_image,
inputs=File(type="filepath"),
outputs=gr.Image(plot=True),
title="GastroHub AI Gastric Image Classifier",
description="Upload an image to classify it as normal or abnormal.",
article="Above is a sample image to test the results of the model. Click it to see the results.",
examples=[
["Gastric_Images/Ladybug.png"],
],
allow_flagging="never",
)
# Run the Gradio app
iface.launch() |