CindyBSydney
commited on
Commit
•
61a1204
1
Parent(s):
742f6ff
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,16 @@ import torchvision.transforms as transforms
|
|
3 |
import torchvision.models as models
|
4 |
import torch.nn as nn
|
5 |
from joblib import load
|
6 |
-
from gradio import File
|
7 |
from PIL import Image
|
8 |
-
import gradio as gr
|
9 |
import matplotlib.pyplot as plt
|
10 |
import io
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
device = torch.device("cpu")
|
|
|
|
|
14 |
data_transforms = transforms.Compose([
|
15 |
transforms.Resize(224),
|
16 |
transforms.CenterCrop(224),
|
@@ -19,57 +21,77 @@ data_transforms = transforms.Compose([
|
|
19 |
])
|
20 |
|
21 |
# Load the Isolation Forest model
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
feature_extractor_path = 'Models/feature_extractor.pth'
|
26 |
-
feature_extractor = models.resnet50(weights=None)
|
27 |
-
feature_extractor.fc = nn.Sequential()
|
28 |
-
feature_extractor.load_state_dict(torch.load(feature_extractor_path, map_location=device))
|
29 |
-
feature_extractor.to(device)
|
30 |
-
feature_extractor.eval()
|
31 |
-
|
32 |
-
# Load gastric classification model
|
33 |
-
GASTRIC_MODEL_PATH = 'Gastric_Models/the_resnet_50_model.pth'
|
34 |
-
model_ft = torch.load(GASTRIC_MODEL_PATH, map_location=device)
|
35 |
-
model_ft.to(device)
|
36 |
-
model_ft.eval()
|
37 |
|
38 |
-
#
|
39 |
-
def
|
|
|
|
|
|
|
|
|
40 |
feature_extractor.to(device)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
is_outlier = clf.predict(image_features.cpu().numpy().reshape(1, -1))
|
45 |
-
return is_outlier[0] == -1
|
46 |
|
47 |
-
# Anomaly detection
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# Anomaly detection
|
53 |
-
if is_anomaly(clf, feature_extractor, input_image):
|
54 |
-
return "Anomaly detected. Image will not be classified.", None
|
55 |
|
56 |
-
|
|
|
57 |
with torch.no_grad():
|
58 |
-
outputs =
|
59 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
60 |
_, predicted = torch.max(outputs, 1)
|
61 |
|
62 |
-
predicted_class_index = predicted.item()
|
63 |
class_names = ['abnormal', 'normal']
|
|
|
64 |
predicted_class_name = class_names[predicted_class_index]
|
65 |
predicted_probability = probabilities[0][predicted_class_index].item() * 100
|
66 |
|
67 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
69 |
iface = gr.Interface(
|
70 |
-
fn=
|
71 |
inputs=File(type="filepath"),
|
72 |
-
outputs=gr.Image(),
|
73 |
title="GastroHub AI Gastric Image Classifier",
|
74 |
description="Upload an image to classify it as normal or abnormal.",
|
75 |
article="Above is a sample image to test the results of the model. Click it to see the results.",
|
@@ -79,5 +101,4 @@ iface = gr.Interface(
|
|
79 |
allow_flagging="never",
|
80 |
)
|
81 |
|
82 |
-
# Run the Gradio app
|
83 |
iface.launch()
|
|
|
3 |
import torchvision.models as models
|
4 |
import torch.nn as nn
|
5 |
from joblib import load
|
|
|
6 |
from PIL import Image
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import io
|
9 |
+
import numpy as np
|
10 |
+
import gradio as gr
|
11 |
|
12 |
+
# Device configuration
|
13 |
device = torch.device("cpu")
|
14 |
+
|
15 |
+
# Transformation for the input images
|
16 |
data_transforms = transforms.Compose([
|
17 |
transforms.Resize(224),
|
18 |
transforms.CenterCrop(224),
|
|
|
21 |
])
|
22 |
|
23 |
# Load the Isolation Forest model
|
24 |
+
def load_isolation_forest():
|
25 |
+
path = 'Models/Anomaly_MSI_MSS_Isolation_Forest_model.joblib'
|
26 |
+
return load(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Load the feature extractor
|
29 |
+
def load_feature_extractor():
|
30 |
+
feature_extractor_path = 'Models/feature_extractor.pth'
|
31 |
+
feature_extractor = models.resnet50(weights=None)
|
32 |
+
feature_extractor.fc = nn.Sequential()
|
33 |
+
feature_extractor.load_state_dict(torch.load(feature_extractor_path, map_location=device))
|
34 |
feature_extractor.to(device)
|
35 |
+
feature_extractor.eval()
|
36 |
+
return feature_extractor
|
|
|
|
|
|
|
37 |
|
38 |
+
# Anomaly detection function
|
39 |
+
def is_anomaly(clf, feature_extractor, image):
|
40 |
+
with torch.no_grad():
|
41 |
+
image_features = feature_extractor(image)
|
42 |
+
return clf.predict(image_features.cpu().numpy().reshape(1, -1))[0] == -1
|
|
|
|
|
|
|
43 |
|
44 |
+
# Classification function
|
45 |
+
def classify_image(model, image):
|
46 |
with torch.no_grad():
|
47 |
+
outputs = model(image)
|
48 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
49 |
_, predicted = torch.max(outputs, 1)
|
50 |
|
|
|
51 |
class_names = ['abnormal', 'normal']
|
52 |
+
predicted_class_index = predicted.item()
|
53 |
predicted_class_name = class_names[predicted_class_index]
|
54 |
predicted_probability = probabilities[0][predicted_class_index].item() * 100
|
55 |
|
56 |
+
return predicted_class_name, predicted_probability
|
57 |
+
|
58 |
+
# Load the classification model
|
59 |
+
def load_classification_model():
|
60 |
+
model_path = 'Gastric_Models/the_resnet_50_model.pth'
|
61 |
+
model = torch.load(model_path, map_location=device)
|
62 |
+
model.to(device)
|
63 |
+
model.eval()
|
64 |
+
return model
|
65 |
+
|
66 |
+
# Function to process the image and get results
|
67 |
+
def process_image(image_path):
|
68 |
+
# Convert to PIL and apply transforms
|
69 |
+
image = Image.open(io.BytesIO(image_path.read())).convert('RGB')
|
70 |
+
input_image = data_transforms(image).unsqueeze(0).to(device)
|
71 |
+
|
72 |
+
# Load models
|
73 |
+
clf = load_isolation_forest()
|
74 |
+
feature_extractor = load_feature_extractor()
|
75 |
+
classification_model = load_classification_model()
|
76 |
+
|
77 |
+
# Check for anomaly
|
78 |
+
if is_anomaly(clf, feature_extractor, input_image):
|
79 |
+
return "Anomaly detected. Image will not be classified.", None, None
|
80 |
+
|
81 |
+
# Classify image
|
82 |
+
predicted_class, probability = classify_image(classification_model, input_image)
|
83 |
+
result = f"The predicted class is: {predicted_class} with a probability of {probability:.2f}%"
|
84 |
+
|
85 |
+
# Further processing for heatmap or additional features can be added here
|
86 |
+
|
87 |
+
return result, None, None # Returning placeholders for additional outputs if needed
|
88 |
|
89 |
+
# Gradio interface
|
90 |
+
|
91 |
iface = gr.Interface(
|
92 |
+
fn=process_image,
|
93 |
inputs=File(type="filepath"),
|
94 |
+
outputs=[gr.Textbox(label="Result"), gr.Image(label="Heatmap"), gr.Image(label="Additional Output")],
|
95 |
title="GastroHub AI Gastric Image Classifier",
|
96 |
description="Upload an image to classify it as normal or abnormal.",
|
97 |
article="Above is a sample image to test the results of the model. Click it to see the results.",
|
|
|
101 |
allow_flagging="never",
|
102 |
)
|
103 |
|
|
|
104 |
iface.launch()
|