File size: 8,298 Bytes
d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 2d03ac2 d5436e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import logging
import os
from abc import ABC
import requests
import yaml
from langchain.prompts import PromptTemplate
from langchain_community.llms import LlamaCpp
from llm.config import config
from llm.llm_interface import LLMInterface
logger = logging.getLogger(__name__)
logger.setLevel(logging.CRITICAL) # because if something went wrong in execution application can't be work anymore
file_handler = logging.FileHandler(
"logs/chelsea_llm_llamacpp.log") # for all modules template for logs file is "logs/chelsea_{module_name}_{dir_name}.log"
logger.setLevel(logging.INFO) # informed
formatted = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
file_handler.setFormatter(formatted)
logger.addHandler(file_handler)
class LC_TinyLlama(LLMInterface, ABC):
def __init__(self, prompt_entity: str, prompt_id: int = 0):
self.prompt_entity = prompt_entity
self.prompt_id = prompt_id
self.model_config = config["LC_TinyLlama-1.1B-Chat-v1.0-GGUF"]
try:
get_file = requests.get(self.model_config["model_url"])
if get_file.status_code == 200:
path_to_model = os.path.join("../models", self.model_config["model_name"])
with open(path_to_model, "wb") as f:
f.write(get_file.content)
logger.info("Model file successfully recorded")
f.close()
except OSError as e:
print(f"Error while write a file to directory : {e}")
logger.error(msg="Error while write a file to directory", exc_info=e)
@staticmethod
def __read_yaml():
try:
yaml_file = os.path.join("../", 'prompts.yaml')
with open(yaml_file, 'r') as file:
data = yaml.safe_load(file)
return data
except Exception as e:
print(f"Execution filed : {e}")
logger.error(msg="Execution filed", exc_info=e)
def execution(self):
try:
data = self.__read_yaml()
prompts = data["prompts"][
self.prompt_id] # to get second prompt from yaml, need change id parameter to get other prompt
template = prompts["prompt_template"]
prompt = PromptTemplate(template=template, input_variables=["entity"])
llm = LlamaCpp(
model_path=os.path.join("../models", self.model_config["model_name"]),
temperature=self.model_config["temperature"],
max_tokens=self.model_config["max_tokens"],
top_p=self.model_config["top_p"],
top_k=self.model_config["top_k"],
# callback_manager=callback_manager,
verbose=True, # Verbose is required to pass to the callback manager
)
logger.info(f"Check llm : {llm}")
llm_chain = prompt | llm
output = llm_chain.invoke({"question": self.prompt_entity})
return output
except Exception as e:
print(f"Execution filed : {e}")
logger.critical(msg="Execution filed", exc_info=e)
def clear_llm(self, unused_model_dict, current_lc):
# If unused_model_dict is not empty
if len(unused_model_dict) > 1 or unused_model_dict is not None:
# go through key and value
for key, value in unused_model_dict.items():
# check if path is existing and key is not current using model
if os.path.exists(value) and key != current_lc:
# delete files from models directory except of current_lc
os.remove(value)
logger.info(f"Successfully deleted file {value}")
else:
logger.info(f"Unfortunately dictionary empty or None")
def get_unused(self, current_lc):
models_dir = "../models"
if len(os.listdir(models_dir)) > 1:
file_names = [os.path.basename(md) for md in os.listdir(models_dir)]
for item in file_names:
if item != current_lc:
unused_model_file = os.path.join(models_dir, item)
return {item: unused_model_file}
else:
return None
def __str__(self):
return f"prompt_entity={self.prompt_entity}, prompt_id={self.prompt_id}"
def __repr__(self):
return f"{self.__class__.__name__}(prompt_entity: {type(self.prompt_entity)} = {self.prompt_entity}, prompt_id: {type(self.prompt_id)} = {self.prompt_id})"
class LC_Phi3(LLMInterface, ABC):
def __init__(self, prompt_entity: str, prompt_id: int = 0):
self.prompt_entity = prompt_entity
self.prompt_id = prompt_id
self.model_config = config["LC_Phi-3-mini-4k-instruct-gguf"]
try:
get_file = requests.get(self.model_config["model_url"])
if get_file.status_code == 200:
path_to_model = os.path.join("../models", self.model_config["model_name"])
with open(path_to_model, "wb") as f:
f.write(get_file.content)
logger.info("Model file successfully recorded")
f.close()
except OSError as e:
print(f"Error while write a file to directory : {e}")
logger.error(msg="Error while write a file to directory", exc_info=e)
@staticmethod
def __read_yaml():
try:
yaml_file = os.path.join("../", 'prompts.yaml')
with open(yaml_file, 'r') as file:
data = yaml.safe_load(file)
return data
except Exception as e:
print(f"Execution filed : {e}")
logger.error(msg="Execution filed", exc_info=e)
def execution(self):
try:
data = self.__read_yaml()
prompts = data["prompts"][
self.prompt_id] # get second prompt from yaml, need change id parameter to get other prompt
template = prompts["prompt_template"]
prompt = PromptTemplate(template=template, input_variables=["entity"])
llm = LlamaCpp(
model_path=os.path.join("../models", self.model_config["model_name"]),
temperature=self.model_config["temperature"],
max_tokens=self.model_config["max_tokens"],
top_p=self.model_config["top_p"],
top_k=self.model_config["top_k"],
# callback_manager=callback_manager,
verbose=True, # Verbose is required to pass to the callback manager
)
logger.info(f"Check llm : {llm}")
llm_chain = prompt | llm
output = llm_chain.invoke({"question": self.prompt_entity})
return output
except Exception as e:
print(f"Execution filed : {e}")
logger.critical(msg="Execution filed", exc_info=e)
def clear_llm(self, unused_model_dict, current_lc):
# If unused_model_dict is not empty
if len(unused_model_dict) > 1 or unused_model_dict is not None:
# go through key and value
for key, value in unused_model_dict.items():
# check if path is existing and key is not current using model
if os.path.exists(value) and key != current_lc:
# delete files from models directory except of current_lc
os.remove(value)
logger.info(f"Successfully deleted file {value}")
else:
logger.info(f"Unfortunately dictionary empty or None")
def get_unused(self, current_lc):
models_dir = "../models"
if len(os.listdir(models_dir)) > 1:
file_names = [os.path.basename(md) for md in os.listdir(models_dir)]
for item in file_names:
if item != current_lc:
unused_model_file = os.path.join(models_dir, item)
return {item: unused_model_file}
else:
return None
def __str__(self):
return f"prompt_entity={self.prompt_entity}, prompt_id={self.prompt_id}"
def __repr__(self):
return f"{self.__class__.__name__}(prompt_entity: {type(self.prompt_entity)} = {self.prompt_entity}, prompt_id: {type(self.prompt_id)} = {self.prompt_id})" |