File size: 8,298 Bytes
d5436e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
 
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
2d03ac2
d5436e0
2d03ac2
d5436e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
 
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
2d03ac2
d5436e0
2d03ac2
d5436e0
 
 
 
 
 
2d03ac2
d5436e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import logging
import os
from abc import ABC

import requests
import yaml
from langchain.prompts import PromptTemplate
from langchain_community.llms import LlamaCpp

from llm.config import config
from llm.llm_interface import LLMInterface

logger = logging.getLogger(__name__)

logger.setLevel(logging.CRITICAL)  # because if something went wrong in execution application can't be work anymore

file_handler = logging.FileHandler(
    "logs/chelsea_llm_llamacpp.log")  # for all modules template for logs file is "logs/chelsea_{module_name}_{dir_name}.log"
logger.setLevel(logging.INFO)  # informed

formatted = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
file_handler.setFormatter(formatted)

logger.addHandler(file_handler)


class LC_TinyLlama(LLMInterface, ABC):
    def __init__(self, prompt_entity: str, prompt_id: int = 0):
        self.prompt_entity = prompt_entity
        self.prompt_id = prompt_id

        self.model_config = config["LC_TinyLlama-1.1B-Chat-v1.0-GGUF"]

        try:
            get_file = requests.get(self.model_config["model_url"])
            if get_file.status_code == 200:
                path_to_model = os.path.join("../models", self.model_config["model_name"])
                with open(path_to_model, "wb") as f:
                    f.write(get_file.content)
                logger.info("Model file successfully recorded")
                f.close()
        except OSError as e:
            print(f"Error while write a file to directory : {e}")
            logger.error(msg="Error while write a file to directory", exc_info=e)

    @staticmethod
    def __read_yaml():
        try:
            yaml_file = os.path.join("../", 'prompts.yaml')
            with open(yaml_file, 'r') as file:
                data = yaml.safe_load(file)
            return data
        except Exception as e:
            print(f"Execution filed : {e}")
            logger.error(msg="Execution filed", exc_info=e)

    def execution(self):
        try:
            data = self.__read_yaml()
            prompts = data["prompts"][
                self.prompt_id]  # to get second prompt from yaml, need change id parameter to get other prompt
            template = prompts["prompt_template"]
            prompt = PromptTemplate(template=template, input_variables=["entity"])

            llm = LlamaCpp(
                model_path=os.path.join("../models", self.model_config["model_name"]),
                temperature=self.model_config["temperature"],
                max_tokens=self.model_config["max_tokens"],
                top_p=self.model_config["top_p"],
                top_k=self.model_config["top_k"],
                # callback_manager=callback_manager,
                verbose=True,  # Verbose is required to pass to the callback manager
            )

            logger.info(f"Check llm : {llm}")

            llm_chain = prompt | llm
            output = llm_chain.invoke({"question": self.prompt_entity})
            return output
        except Exception as e:
            print(f"Execution filed : {e}")
            logger.critical(msg="Execution filed", exc_info=e)

    def clear_llm(self, unused_model_dict, current_lc):
        # If unused_model_dict is not empty
        if len(unused_model_dict) > 1 or unused_model_dict is not None:
            # go through key and value
            for key, value in unused_model_dict.items():
                # check if path is existing and key is not current using model
                if os.path.exists(value) and key != current_lc:
                    # delete files from models directory except of current_lc
                    os.remove(value)
                    logger.info(f"Successfully deleted file {value}")
        else:
            logger.info(f"Unfortunately dictionary empty or None")

    def get_unused(self, current_lc):
        models_dir = "../models"

        if len(os.listdir(models_dir)) > 1:
            file_names = [os.path.basename(md) for md in os.listdir(models_dir)]
            for item in file_names:
                if item != current_lc:
                    unused_model_file = os.path.join(models_dir, item)
                    return {item: unused_model_file}
        else:
            return None

    def __str__(self):
        return f"prompt_entity={self.prompt_entity}, prompt_id={self.prompt_id}"

    def __repr__(self):
        return f"{self.__class__.__name__}(prompt_entity: {type(self.prompt_entity)} = {self.prompt_entity}, prompt_id: {type(self.prompt_id)} = {self.prompt_id})"


class LC_Phi3(LLMInterface, ABC):
    def __init__(self, prompt_entity: str, prompt_id: int = 0):
        self.prompt_entity = prompt_entity
        self.prompt_id = prompt_id

        self.model_config = config["LC_Phi-3-mini-4k-instruct-gguf"]

        try:
            get_file = requests.get(self.model_config["model_url"])
            if get_file.status_code == 200:
                path_to_model = os.path.join("../models", self.model_config["model_name"])
                with open(path_to_model, "wb") as f:
                    f.write(get_file.content)
                logger.info("Model file successfully recorded")
                f.close()
        except OSError as e:
            print(f"Error while write a file to directory : {e}")
            logger.error(msg="Error while write a file to directory", exc_info=e)

    @staticmethod
    def __read_yaml():
        try:
            yaml_file = os.path.join("../", 'prompts.yaml')
            with open(yaml_file, 'r') as file:
                data = yaml.safe_load(file)
            return data
        except Exception as e:
            print(f"Execution filed : {e}")
            logger.error(msg="Execution filed", exc_info=e)

    def execution(self):
        try:
            data = self.__read_yaml()
            prompts = data["prompts"][
                self.prompt_id]  # get second prompt from yaml, need change id parameter to get other prompt
            template = prompts["prompt_template"]
            prompt = PromptTemplate(template=template, input_variables=["entity"])

            llm = LlamaCpp(
                model_path=os.path.join("../models", self.model_config["model_name"]),
                temperature=self.model_config["temperature"],
                max_tokens=self.model_config["max_tokens"],
                top_p=self.model_config["top_p"],
                top_k=self.model_config["top_k"],
                # callback_manager=callback_manager,
                verbose=True,  # Verbose is required to pass to the callback manager
            )

            logger.info(f"Check llm : {llm}")

            llm_chain = prompt | llm
            output = llm_chain.invoke({"question": self.prompt_entity})
            return output
        except Exception as e:
            print(f"Execution filed : {e}")
            logger.critical(msg="Execution filed", exc_info=e)

    def clear_llm(self, unused_model_dict, current_lc):
        # If unused_model_dict is not empty
        if len(unused_model_dict) > 1 or unused_model_dict is not None:
            # go through key and value
            for key, value in unused_model_dict.items():
                # check if path is existing and key is not current using model
                if os.path.exists(value) and key != current_lc:
                    # delete files from models directory except of current_lc
                    os.remove(value)
                    logger.info(f"Successfully deleted file {value}")
        else:
            logger.info(f"Unfortunately dictionary empty or None")

    def get_unused(self, current_lc):
        models_dir = "../models"

        if len(os.listdir(models_dir)) > 1:
            file_names = [os.path.basename(md) for md in os.listdir(models_dir)]
            for item in file_names:
                if item != current_lc:
                    unused_model_file = os.path.join(models_dir, item)
                    return {item: unused_model_file}
        else:
            return None

    def __str__(self):
        return f"prompt_entity={self.prompt_entity}, prompt_id={self.prompt_id}"

    def __repr__(self):
        return f"{self.__class__.__name__}(prompt_entity: {type(self.prompt_entity)} = {self.prompt_entity}, prompt_id: {type(self.prompt_id)} = {self.prompt_id})"