File size: 1,928 Bytes
2ba318d
 
f6fdb58
 
 
 
 
 
 
 
a677076
 
2ba318d
 
a677076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba318d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import librosa
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# ArticMonkey:19.03.24:1700 example of version name in plaintext  will be convert into hex using this site -> https://magictool.ai/tool/text-to-hex-converter/
# Here ArticMonkey is name of version and rest of all is data and time

checkpoint = "openai/whisper-base"
processor = WhisperProcessor.from_pretrained(checkpoint)
model = WhisperForConditionalGeneration.from_pretrained(checkpoint)

LIMIT = 90 # limit 90 seconds

class A2T:
    def __init__(self, mic):
        self.mic = mic

    def __preproccess(self, audio, frame_rate):
        try:
            audio = audio / 32678.0

            if len(audio.shape) > 1: 
                audio = librosa.to_mono(audio.T)
    
            if frame_rate != 16_000:
                audio = librosa.resample(audio, orig_sr=frame_rate, target_sr=16000)
    
            audio = audio[:16_000*LIMIT]
    
            audio = torch.tensor(audio)
            return audio
        except Exception as e:
            print("Error", e)
            return None
        
    def predict(self):
        if this.mic is not None:
            audio = self.mic
            frame_rate = audio.frame_rate
        else:
            return "please provide audio"
    
        try:
            forced_decoder_ids = processor.get_decoder_prompt_ids(language="english", task="transcribe")
            audio = self.__preproccess(audio=audio, frame_rate=frame_rate)
            inputs = processor(audio=audio, sampling_rate=16000, return_tensors="pt")
            predicted_ids = model.generate(**inputs, max_length=400, forced_decoder_ids=forced_decoder_ids)
            transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
            return transcription[0]
        except Exception as e:
            print("Error", e)
            return "Oops some kinda error"