File size: 23,212 Bytes
e294914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8b9f6
e294914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8b9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import os

from abc import ABC
from typing import Any

from llm.utils.hf_interface import HFInterface
from llm.utils.config import config

from langchain_community.llms import HuggingFaceEndpoint

_api = os.environ.get("HUGGINGFACEHUB_API_TOKEN")

class HF_Mistaril(HFInterface, ABC):
    """
    This class represents an interface for the Mistaril large language model from Hugging Face.

    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """

    def __init__(self):
        """
        Initializer for the `HF_Mistaril` class.

        - Retrieves configuration values for the Mistaril model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the Mistaril model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_Mistrail"]["model"]
        max_length = config["HF_Mistrail"]["max_new_tokens"]
        temperature = config["HF_Mistrail"]["temperature"]
        top_k = config["HF_Mistrail"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).

        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm  # `invoke()`
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")

    def model_name(self):
        """
        Simple method that returns the Mistaril model name from the configuration.

        This can be useful for identifying the specific model being used.
        """
        return config["HF_Mistrail"]["model"]

    def __str__(self):
        """
        Defines the string representation of the `HF_Mistaril` object for human readability.

        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_Mistaril` object for debugging purposes.

        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_Mistaril(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_Mistaril(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"

class HF_TinyLlama(HFInterface, ABC):
    """
    This class represents an interface for the TinyLlama large language model from Hugging Face.

    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """
        
    def __init__(self):
        """
        Initializer for the `HF_TinyLlama` class.

        - Retrieves configuration values for the TinyLlama model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the TinyLlama model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_TinyLlama"]["model"]
        max_length = config["HF_TinyLlama"]["max_new_tokens"]
        temperature = config["HF_TinyLlama"]["temperature"]
        top_k = config["HF_TinyLlama"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).
        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
        
    def model_name(self):
        """
        Simple method that returns the TinyLlama model name from the configuration.
        This can be useful for identifying the specific model being used.
        """
        return config["HF_TinyLlama"]["model"]
        
    def __str__(self):
        """
        Defines the string representation of the `HF_TinyLlama` object for human readability.
        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_TinyLlama` object for debugging purposes.
        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_TinyLlama(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_TinyLlama(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"

class HF_SmolLM135(HFInterface, ABC):
    """
    This class represents an interface for the SmolLm tiny language model from Hugging Face.
    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """

    def __init__(self):
        """
        Initializer for the `HF_SmolLM135` class.
        - Retrieves configuration values for the SmolLM135 model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the SmolLM135 model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_SmolLM135"]["model"]
        max_length = config["HF_SmolLM135"]["max_new_tokens"]
        temperature = config["HF_SmolLM135"]["temperature"]
        top_k = config["HF_SmolLM135"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).
        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm  # `invoke()`
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")

    def model_name(self):
        """
        Simple method that returns the SmolLM135 model name from the configuration.
        This can be useful for identifying the specific model being used.
        """
        return config["HF_SmolLM135"]["model"]

    def __str__(self):
        """
        Defines the string representation of the `HF_SmolLM135` object for human readability.
        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_SmolLM135` object for debugging purposes.
        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_SmolLM135(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_SmolLM135(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"

class HF_SmolLM360(HFInterface, ABC):
    """
    This class represents an interface for the SmolLm tiny language model from Hugging Face.
    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """

    def __init__(self):
        """
        Initializer for the `HF_SmolLM360` class.
        - Retrieves configuration values for the SmolLM360 model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the SmolLM360 model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_SmolLM360"]["model"]
        max_length = config["HF_SmolLM360"]["max_new_tokens"]
        temperature = config["HF_SmolLM360"]["temperature"]
        top_k = config["HF_SmolLM360"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).
        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm  # `invoke()`
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")

    def model_name(self):
        """
        Simple method that returns the SmolLM360 model name from the configuration.
        This can be useful for identifying the specific model being used.
        """
        return config["HF_SmolLM360"]["model"]

    def __str__(self):
        """
        Defines the string representation of the `HF_SmolLM360` object for human readability.
        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_SmolLM360` object for debugging purposes.
        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_SmolLM360(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_SmolLM360(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"

class HF_SmolLM(HFInterface, ABC):
    """
    This class represents an interface for the SmolLm small language model from Hugging Face.
    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """

    def __init__(self):
        """
        Initializer for the `HF_SmolLM` class.
        - Retrieves configuration values for the SmolLM model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the SmolLM model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_SmolLM"]["model"]
        max_length = config["HF_SmolLM"]["max_new_tokens"]
        temperature = config["HF_SmolLM"]["temperature"]
        top_k = config["HF_SmolLM"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).
        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm  # `invoke()`
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")

    def model_name(self):
        """
        Simple method that returns the SmolLM model name from the configuration.
        This can be useful for identifying the specific model being used.
        """
        return config["HF_SmolLM"]["model"]

    def __str__(self):
        """
        Defines the string representation of the `HF_SmolLM` object for human readability.
        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_SmolLM` object for debugging purposes.
        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_SmolLM(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_SmolLM(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"

class HF_Gemma2(HFInterface, ABC):
    """
    This class represents an interface for the Gemma2 small language model from Hugging Face.
    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """

    def __init__(self):
        """
        Initializer for the `HF_Gemma2` class.
        - Retrieves configuration values for the Gemma2 model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the Gemma2 model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_Gemma2"]["model"]
        max_length = config["HF_Gemma2"]["max_new_tokens"]
        temperature = config["HF_Gemma2"]["temperature"]
        top_k = config["HF_Gemma2"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).
        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm  # `invoke()`
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")

    def model_name(self):
        """
        Simple method that returns the Gemma2 model name from the configuration.
        This can be useful for identifying the specific model being used.
        """
        return config["HF_Gemma2"]["model"]

    def __str__(self):
        """
        Defines the string representation of the `HF_Gemma2` object for human readability.
        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_Gemma2` object for debugging purposes.
        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_Gemma2(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_Gemma2(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"

class HF_Qwen2(HFInterface, ABC):
    """
    This class represents an interface for the Qwen2 small language model from Hugging Face.
    It inherits from `HFInterface` (likely an interface from a Hugging Face library)
    and `ABC` (for abstract base class) to enforce specific functionalities.
    """

    def __init__(self):
        """
        Initializer for the `HF_Qwen2` class.
        - Retrieves configuration values for the Qwen2 model from a `config` dictionary:
            - `repo_id`: The ID of the repository containing the Qwen2 model on Hugging Face.
            - `max_length`: Maximum length of the generated text.
            - `temperature`: Controls randomness in the generation process.
            - `top_k`: Restricts the vocabulary used for generation.
        - Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
        - Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
          and the `api` key.
        """

        repo_id = config["HF_Qwen2"]["model"]
        max_length = config["HF_Qwen2"]["max_new_tokens"]
        temperature = config["HF_Qwen2"]["temperature"]
        top_k = config["HF_Qwen2"]["top_k"]

        if not _api:
            raise ValueError(f"API key not provided {_api}")

        self.llm = HuggingFaceEndpoint(
            repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
        )

    def execution(self) -> Any:
        """
        This method attempts to return the underlying `llm` (likely a language model object).
        It wraps the retrieval in a `try-except` block to catch potential exceptions.
        On success, it returns the `llm` object.
        On failure, it logs an error message with the exception details using a logger
        (assumed to be available elsewhere).
        """
        try:
            return self.llm  # `invoke()`
        except Exception as e:
            print(f"Something wrong with API or HuggingFaceEndpoint: {e}")

    def model_name(self):
        """
        Simple method that returns the Qwen2 model name from the configuration.
        This can be useful for identifying the specific model being used.
        """
        return config["HF_Qwen2"]["model"]

    def __str__(self):
        """
        Defines the string representation of the `HF_Qwen2` object for human readability.
        It combines the class name and the model name retrieved from the `model_name` method
        with an underscore separator.
        """
        return f"{self.__class__.__name__}_{self.model_name()}"

    def __repr__(self):
        """
        Defines the representation of the `HF_Qwen2` object for debugging purposes.
        It uses `hasattr` to check if the `llm` attribute is set.
        - If `llm` exists, it returns a string like `HF_Qwen2(llm=HuggingFaceEndpoint(...))`,
          showing the class name and the `llm` object information.
        - If `llm` is not yet set (during initialization), it returns
          `HF_Qwen2(llm=not initialized)`, indicating the state.
        """
        llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
        return f"{self.__class__.__name__}({llm_info})"