import torch | |
from transformers import pipeline | |
# ArticMonkey:19.03.24:1700 example of version name in plaintext will be convert into hex using this site -> https://magictool.ai/tool/text-to-hex-converter/ | |
# Here ArticMonkey is name of version and rest of all is data and time | |
device = 0 if torch.cuda.is_available() else "cpu" | |
checkpoint_whisper = "openai/whisper-medium" | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=checkpoint_whisper, | |
device=device, | |
chunk_length_s=30, | |
) | |
# from parler_tts import ParlerTTSForConditionalGeneration | |
# from transformers import AutoTokenizer, AutoFeatureExtractor | |
# checkpoint_parler = "parler-tts/parler_tts_mini_v0.1" | |
# model_parler = ParlerTTSForConditionalGeneration.from_pretrained(checkpoint_parler).to(device) | |
# tokenizer = AutoTokenizer.from_pretrained(checkpoint_parler) | |
# feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint_parler) | |
# SAMPLE_RATE = feature_extractor.sampling_rate | |
# SEED = 42 | |
checkpoint_mms_tts_eng = "facebook/mms-tts-eng" | |
# from transformers import VitsModel, AutoTokenizer | |
# model_mms_tts_eng = VitsModel.from_pretrained(checkpoint_mms_tts_eng) | |
# tokenizer_mms_tts_eng = AutoTokenizer.from_pretrained(checkpoint_mms_tts_eng) | |
pipe_tts = pipeline("text-to-speech", model=checkpoint_mms_tts_eng) |