Chelsea / llm /apimodels /hf_model.py
CineAI's picture
4172637469634d6f6e6b6579733a31382e30382e3234
5a798ba verified
raw
history blame
24.4 kB
import os
import logging
from abc import ABC
from typing import Any
from llm.utils.hf_interface import HFInterface
from llm.utils.config import config
from langchain_community.llms import HuggingFaceEndpoint
logger = logging.getLogger(__name__)
logger.setLevel(logging.ERROR) # because if something went wrong in execution, application can't be work anyway
file_handler = logging.FileHandler(
"logs/chelsea_llm_huggingfacehub.log") # for all modules here template for logs file is "llm/logs/chelsea_{module_name}_{dir_name}.log"
logger.setLevel(logging.INFO) # informed
formatted = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
file_handler.setFormatter(formatted)
logger.addHandler(file_handler)
logger.info("Getting information from apimodel module")
_api = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
class HF_Mistaril(HFInterface, ABC):
"""
This class represents an interface for the Mistaril large language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_Mistaril` class.
- Retrieves configuration values for the Mistaril model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the Mistaril model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_Mistrail"]["model"]
max_length = config["HF_Mistrail"]["max_new_tokens"]
temperature = config["HF_Mistrail"]["temperature"]
top_k = config["HF_Mistrail"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm # `invoke()`
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the Mistaril model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_Mistrail"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_Mistaril` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_Mistaril` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_Mistaril(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_Mistaril(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"
class HF_TinyLlama(HFInterface, ABC):
"""
This class represents an interface for the TinyLlama large language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_TinyLlama` class.
- Retrieves configuration values for the TinyLlama model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the TinyLlama model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_TinyLlama"]["model"]
max_length = config["HF_TinyLlama"]["max_new_tokens"]
temperature = config["HF_TinyLlama"]["temperature"]
top_k = config["HF_TinyLlama"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the TinyLlama model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_TinyLlama"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_TinyLlama` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_TinyLlama` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_TinyLlama(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_TinyLlama(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"
class HF_SmolLM135(HFInterface, ABC):
"""
This class represents an interface for the SmolLm tiny language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_SmolLM135` class.
- Retrieves configuration values for the SmolLM135 model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the SmolLM135 model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_SmolLM135"]["model"]
max_length = config["HF_SmolLM135"]["max_new_tokens"]
temperature = config["HF_SmolLM135"]["temperature"]
top_k = config["HF_SmolLM135"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm # `invoke()`
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the SmolLM135 model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_SmolLM135"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_SmolLM135` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_SmolLM135` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_SmolLM135(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_SmolLM135(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"
class HF_SmolLM360(HFInterface, ABC):
"""
This class represents an interface for the SmolLm tiny language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_SmolLM360` class.
- Retrieves configuration values for the SmolLM360 model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the SmolLM360 model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_SmolLM360"]["model"]
max_length = config["HF_SmolLM360"]["max_new_tokens"]
temperature = config["HF_SmolLM360"]["temperature"]
top_k = config["HF_SmolLM360"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm # `invoke()`
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the SmolLM360 model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_SmolLM360"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_SmolLM360` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_SmolLM360` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_SmolLM360(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_SmolLM360(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"
class HF_SmolLM(HFInterface, ABC):
"""
This class represents an interface for the SmolLm small language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_SmolLM` class.
- Retrieves configuration values for the SmolLM model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the SmolLM model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_SmolLM"]["model"]
max_length = config["HF_SmolLM"]["max_new_tokens"]
temperature = config["HF_SmolLM"]["temperature"]
top_k = config["HF_SmolLM"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm # `invoke()`
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the SmolLM model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_SmolLM"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_SmolLM` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_SmolLM` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_SmolLM(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_SmolLM(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"
class HF_Gemma2(HFInterface, ABC):
"""
This class represents an interface for the Gemma2 small language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_Gemma2` class.
- Retrieves configuration values for the Gemma2 model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the Gemma2 model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_Gemma2"]["model"]
max_length = config["HF_Gemma2"]["max_new_tokens"]
temperature = config["HF_Gemma2"]["temperature"]
top_k = config["HF_Gemma2"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm # `invoke()`
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the Gemma2 model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_Gemma2"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_Gemma2` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_Gemma2` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_Gemma2(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_Gemma2(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"
class HF_Qwen2(HFInterface, ABC):
"""
This class represents an interface for the Qwen2 small language model from Hugging Face.
It inherits from `HFInterface` (likely an interface from a Hugging Face library)
and `ABC` (for abstract base class) to enforce specific functionalities.
"""
def __init__(self):
"""
Initializer for the `HF_Qwen2` class.
- Retrieves configuration values for the Qwen2 model from a `config` dictionary:
- `repo_id`: The ID of the repository containing the Qwen2 model on Hugging Face.
- `max_length`: Maximum length of the generated text.
- `temperature`: Controls randomness in the generation process.
- `top_k`: Restricts the vocabulary used for generation.
- Raises a `ValueError` if the `api` key (presumably stored elsewhere) is missing.
- Creates an instance of `HuggingFaceEndpoint` using the retrieved configuration
and the `api` key.
"""
repo_id = config["HF_Qwen2"]["model"]
max_length = config["HF_Qwen2"]["max_new_tokens"]
temperature = config["HF_Qwen2"]["temperature"]
top_k = config["HF_Qwen2"]["top_k"]
if not _api:
raise ValueError(f"API key not provided {_api}")
self.llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=max_length, temperature=temperature, top_k=top_k, token=_api
)
def execution(self) -> Any:
"""
This method attempts to return the underlying `llm` (likely a language model object).
It wraps the retrieval in a `try-except` block to catch potential exceptions.
On success, it returns the `llm` object.
On failure, it logs an error message with the exception details using a logger
(assumed to be available elsewhere).
"""
try:
return self.llm # `invoke()`
except Exception as e:
logger.error("Something wrong with API or HuggingFaceEndpoint", exc_info=e)
print(f"Something wrong with API or HuggingFaceEndpoint: {e}")
def model_name(self):
"""
Simple method that returns the Qwen2 model name from the configuration.
This can be useful for identifying the specific model being used.
"""
return config["HF_Qwen2"]["model"]
def __str__(self):
"""
Defines the string representation of the `HF_Qwen2` object for human readability.
It combines the class name and the model name retrieved from the `model_name` method
with an underscore separator.
"""
return f"{self.__class__.__name__}_{self.model_name()}"
def __repr__(self):
"""
Defines the representation of the `HF_Qwen2` object for debugging purposes.
It uses `hasattr` to check if the `llm` attribute is set.
- If `llm` exists, it returns a string like `HF_Qwen2(llm=HuggingFaceEndpoint(...))`,
showing the class name and the `llm` object information.
- If `llm` is not yet set (during initialization), it returns
`HF_Qwen2(llm=not initialized)`, indicating the state.
"""
llm_info = f"llm={self.llm}" if hasattr(self, 'llm') else 'llm=not initialized'
return f"{self.__class__.__name__}({llm_info})"