|
import numpy as np |
|
|
|
from .init import pipe |
|
|
|
TASK = "transcribe" |
|
BATCH_SIZE = 16 |
|
|
|
class A2T: |
|
def __init__(self, mic): |
|
self.mic = mic |
|
|
|
def __transcribe(self, inputs, task: str = None): |
|
if inputs is None: |
|
print("Inputs None") |
|
|
|
transcribed_text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) |
|
print("transcribed_text : ", transcribed_text) |
|
return transcribed_text["text"] |
|
|
|
def __preprocces(self, raw: np.ndarray): |
|
chunk = raw.astype(np.float32, order='C') / 32768.0 |
|
return chunk |
|
|
|
def predict(self): |
|
try: |
|
if self.mic is not None: |
|
chunk = self.mic.get_array_of_samples() |
|
chunk = np.array(chunk) |
|
audio = self.__preprocces(chunk) |
|
sampling_rate = self.mic.frame_rate |
|
print(f"audio : {audio} \n frame_rate : {sampling_rate}") |
|
else: |
|
return "please provide audio" |
|
|
|
if isinstance(audio , np.ndarray): |
|
inputs = {"sampling_rate": sampling_rate, "raw": audio} |
|
return self.__transcribe(inputs=inputs, task=TASK) |
|
else: |
|
return "Audio is not np array" |
|
|
|
except Exception as e: |
|
print("Predict error", e) |
|
return "Oops some kinda error" |
|
|