CineAI's picture
Update audio2text/a2t.py
b1e2882 verified
raw
history blame
1.83 kB
import librosa
import numpy as np
from .init import pipe
TASK = "transcribe"
BATCH_SIZE = 8
LIMIT = 60
SAMPLING_RATE = 16000
class A2T:
def __init__(self, mic):
self.mic = mic
def __transcribe(self, inputs, task: str = None):
if inputs is None:
print("Inputs None")
transcribed_text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return transcribed_text
def __preprocces(self, raw: np.ndarray, sampling_rate: int):
chunk = raw.astype(np.float32, order='C') / 32768.0
print(f"Chunk : {chunk} max chunk : {np.max(chunk)}")
if len(chunk.shape) > 1:
chunk = librosa.to_mono(chunk.T)
chunk = chunk[:SAMPLING_RATE*LIMIT]
return chunk
def predict(self):
try:
if self.mic is not None:
raw = self.mic.get_array_of_samples()
chunk = np.array(raw, dtype=np.int16)
sampling_rate = self.mic.frame_rate
audio = self.__preprocces(raw=chunk, sampling_rate=sampling_rate)
print(f"audio : {audio} \n shape : {audio.shape} \n max : {np.max(audio)} \n shape of chunk : {chunk.shape} \n sampling rate : {sampling_rate} \n max chunk : {np.max(chunk)} \n chunk : {chunk}")
else:
raise Exception("please provide audio")
if isinstance(audio , np.ndarray):
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
return self.__transcribe(inputs=inputs, task=TASK)
else:
raise Exception("Audio is not np array")
except Exception as e:
return f"Oops some kinda error : {e}"