import os import yaml import logging from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.llms import HuggingFaceHub from .config import config class LLM_chain: def __init__(self): self.llm = HuggingFaceHub( repo_id=config["model"], model_kwargs={"temperature": config["temperature"], "max_new_tokens": config["max_new_tokens"], "top_k": config["top_k"], "load_in_8bit": config["load_in_8bit"]}) def __read_yaml(self): try: # get current dir current_dir = os.path.dirname(os.path.realpath(__file__)) yaml_file = os.path.join(current_dir, 'prompts.yaml') with open(yaml_file, 'r') as file: data = yaml.safe_load(file) return data except Exception as e: logging.error(e) def __call__(self, entity: str, id: int = 0): try: data = self.__read_yaml() prompts = data["prompts"] template = prompts["prompt_template"][1] prompt = PromptTemplate(template=template, input_variables=["entity"]) llm_chain = LLMChain(prompt=prompt, llm=self.llm, verbose=True) output = llm_chain.invoke(entity) return output["text"] except Exception as e: logging.error(e)