import time from llm.apimodels.gemini_model import Gemini from llm.apimodels.hf_model import HF_Mistaril, HF_TinyLlama, HF_SmolLM135, HF_SmolLM360, HF_SmolLM, HF_Gemma2, HF_Qwen2 from typing import Optional, Any from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain.chains import ConversationChain def prettify(raw_text: str) -> str: pretty = raw_text.replace("**", "") return pretty.strip() memory: ConversationBufferWindowMemory = ConversationBufferWindowMemory(k=3, ai_prefix="Chelsea") DELAY: int = 300 # 5 minutes def has_failed(conversation, prompt) -> Optional[str]: """ Checks if the LLM conversation prediction fails and returns None if so. Args: conversation: The LLM conversation object used for prediction. prompt: The prompt to be used for prediction. Returns: None, otherwise the prettified response. """ try: response = conversation.predict(input=prompt) print(f"response: {response}") result = prettify(raw_text=response) return result except Exception as e: print(f"Error during prediction with conversation in has_failed function: {e}") return None def has_delay(conversation, prompt) -> Optional[str]: """ Checks if the LLM conversation prediction takes longer than a set delay. Args: conversation: The LLM conversation object used for prediction. prompt: The prompt to be used for prediction. Returns: None if the execution time exceeds the delay, otherwise, the prettified response from the conversation object. """ start_time = time.perf_counter() # Start timer before prediction try: response = conversation.predict(input=prompt) execution_time = time.perf_counter() - start_time # Calculate execution time if execution_time > DELAY: return None # Return None if delayed result = prettify(raw_text=response) # Prettify the response return result # Return the prettified response except Exception as e: print(f"Error during prediction with conversation in has_delay function: {e}") class Conversation: def __init__(self): """ Initializes the Conversation class with a prompt and a list of LLM model classes. Args: model_classes (list, optional): A list of LLM model classes to try in sequence. Defaults to [Gemini, HF_SmolLM135, HF_SmolLM360, HF_TinyLlama, HF_SmolLM, HF_Gemma2, HF_Mistaril, HF_Qwen2]. """ self.model_classes = [Gemini, HF_Gemma2, HF_SmolLM, HF_SmolLM360, HF_Mistaril, HF_Qwen2, HF_TinyLlama, HF_SmolLM135] self.current_model_index = 0 def _get_conversation(self) -> Any: """ Creates a ConversationChain object using the current model class. """ try: current_model_class = self.model_classes[self.current_model_index] print("current model class is: ", current_model_class) return ConversationChain(llm=current_model_class().execution(), memory=memory, return_final_only=True) except Exception as e: print(f"Error during conversation chain in get_conversation function: {e}") def chatting(self, prompt: str, is_own_model: bool) -> str: """ Carries out the conversation with the user, handling errors and delays. Args: prompt(str): The prompt to be used for prediction. Returns: str: The final conversation response or None if all models fail. """ if prompt is None or prompt == "": raise Exception(f"Prompt must be string not None or empty string: {prompt}") while self.current_model_index < len(self.model_classes): conversation = self._get_conversation() result = has_failed(conversation=conversation, prompt=prompt) if result is not None: return result print(f"chat - chatting result : {result}") result = has_delay(conversation=conversation, prompt=prompt) if result is None: self.current_model_index += 1 # Switch to next model after delay continue return result return "All models failed conversation. Please, try again" def __str__(self) -> str: return f"prompt: {type(self.prompt)}" def __repr__(self) -> str: return f"{self.__class__.__name__}(prompt: {type(self.prompt)})"