Spaces:
Running
Running
Commit
·
0aa2056
1
Parent(s):
b470a83
Update app
Browse files
app.py
CHANGED
@@ -112,8 +112,7 @@ def series_to_df_exogenous(series):
|
|
112 |
return dataframe
|
113 |
|
114 |
@st.cache_data
|
115 |
-
def
|
116 |
-
dataframe = series.to_frame()
|
117 |
dataframe = dataframe.reset_index()
|
118 |
dataframe['Date'] = dataframe['Date'].dt.strftime('%B %d, %Y')
|
119 |
dataframe[df.columns] = dataframe[df.columns].astype(str)
|
@@ -263,7 +262,6 @@ with st.sidebar:
|
|
263 |
st.write("Your uploaded data:")
|
264 |
st.write(df)
|
265 |
|
266 |
-
# Data pre-processing
|
267 |
df = drop(df)
|
268 |
df = date_format(df)
|
269 |
merge_sort(df)
|
@@ -274,7 +272,7 @@ with st.sidebar:
|
|
274 |
st.download_button("Download our sample CSV", f, file_name='sample.csv')
|
275 |
|
276 |
if (st.session_state.uploaded):
|
277 |
-
st.line_chart(series)
|
278 |
|
279 |
MIN_DAYS = 30
|
280 |
MAX_DAYS = 90
|
@@ -289,73 +287,37 @@ if (st.session_state.uploaded):
|
|
289 |
if (forecast_button):
|
290 |
df = series_to_df_exogenous(series)
|
291 |
|
292 |
-
|
293 |
-
training_y, test_y, test_y_series, training_X, test_X, future_X =
|
294 |
-
|
295 |
-
# Auto_arima to fit the model to forecast future sales
|
296 |
-
future_model = model_fitting(df, future_X)
|
297 |
-
# Auto_arima to check the accuracy of the train test split
|
298 |
train_test_model = test_fitting(df, training_X, training_y)
|
299 |
|
300 |
-
# Forecast (testing)
|
301 |
n_periods = round(len(df) * 0.2)
|
|
|
|
|
302 |
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
|
|
|
303 |
index_of_fc = test_y_series.index
|
304 |
|
305 |
# make series for plotting purpose
|
306 |
fitted_series = pd.Series(fitted)
|
307 |
-
fitted_series.index
|
308 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
309 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
# plt.figure(figsize=(12,8))
|
316 |
-
# plt.plot(training_y[-80:])
|
317 |
-
# plt.plot(test_y, color = 'red', label = 'Actual Sales')
|
318 |
-
# plt.plot(fitted_series, color='darkgreen', label = 'Predicted Sales')
|
319 |
-
# plt.fill_between(lower_series.index,
|
320 |
-
# lower_series,
|
321 |
-
# upper_series,
|
322 |
-
# color='k', alpha=.15)
|
323 |
-
|
324 |
-
# plt.title("SARIMAX - Forecast of Retail Sales VS Actual Sales")
|
325 |
-
# plt.legend(loc='upper left', fontsize=8)
|
326 |
-
# plt.show()
|
327 |
|
328 |
-
#
|
329 |
-
|
330 |
-
# Forecast (actual)
|
331 |
-
n_periods = forecast_period
|
332 |
-
freq='3D'
|
333 |
-
future_fitted, confint = future_model.predict(X=df.iloc[-n_periods:,1:], n_periods=n_periods, return_conf_int=True, freq=freq)
|
334 |
-
future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = n_periods, freq=freq)
|
335 |
-
|
336 |
-
# make series for plotting purpose
|
337 |
future_fitted_series = pd.Series(future_fitted)
|
338 |
-
future_fitted_series.index=future_index_of_fc
|
339 |
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
|
340 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
341 |
|
342 |
-
|
343 |
-
# plt.figure(figsize=(12,8))
|
344 |
-
# plt.plot(df['Sales'][-50:])
|
345 |
-
# plt.plot(future_fitted_series, color='darkgreen')
|
346 |
-
# plt.fill_between(future_lower_series.index,
|
347 |
-
# future_lower_series,
|
348 |
-
# future_upper_series,
|
349 |
-
# color='k', alpha=.15)
|
350 |
-
|
351 |
-
# plt.title("SARIMA - Final Forecast of Retail Sales")
|
352 |
-
# plt.show()
|
353 |
-
|
354 |
-
# Create traces for each line and fill_between
|
355 |
-
|
356 |
-
auto_sales_growth = sales_growth(df, future_fitted_series)
|
357 |
|
358 |
-
df =
|
359 |
st.write("Forecasted sales in the next 3 months")
|
360 |
st.write(df)
|
361 |
|
@@ -363,6 +325,6 @@ if (st.session_state.uploaded):
|
|
363 |
question = st.text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
|
364 |
query_button = st.form_submit_button(label='Generate Answer')
|
365 |
|
366 |
-
if query_button:
|
367 |
answer = get_converted_answer(df, question)
|
368 |
st.write("The answer is:", answer)
|
|
|
112 |
return dataframe
|
113 |
|
114 |
@st.cache_data
|
115 |
+
def dates_df(dataframe):
|
|
|
116 |
dataframe = dataframe.reset_index()
|
117 |
dataframe['Date'] = dataframe['Date'].dt.strftime('%B %d, %Y')
|
118 |
dataframe[df.columns] = dataframe[df.columns].astype(str)
|
|
|
262 |
st.write("Your uploaded data:")
|
263 |
st.write(df)
|
264 |
|
|
|
265 |
df = drop(df)
|
266 |
df = date_format(df)
|
267 |
merge_sort(df)
|
|
|
272 |
st.download_button("Download our sample CSV", f, file_name='sample.csv')
|
273 |
|
274 |
if (st.session_state.uploaded):
|
275 |
+
st.line_chart(series)
|
276 |
|
277 |
MIN_DAYS = 30
|
278 |
MAX_DAYS = 90
|
|
|
287 |
if (forecast_button):
|
288 |
df = series_to_df_exogenous(series)
|
289 |
|
290 |
+
train = train_test(df)
|
291 |
+
training_y, test_y, test_y_series, training_X, test_X, future_X = train
|
|
|
|
|
|
|
|
|
292 |
train_test_model = test_fitting(df, training_X, training_y)
|
293 |
|
|
|
294 |
n_periods = round(len(df) * 0.2)
|
295 |
+
future_n_periods = forecast_period + n_periods
|
296 |
+
|
297 |
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
|
298 |
+
|
299 |
index_of_fc = test_y_series.index
|
300 |
|
301 |
# make series for plotting purpose
|
302 |
fitted_series = pd.Series(fitted)
|
303 |
+
fitted_series.index=index_of_fc
|
304 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
305 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
306 |
|
307 |
+
#Future predictions
|
308 |
+
frequency = '3D'
|
309 |
+
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
|
310 |
+
future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = future_n_periods, freq=frequency)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
# make series for future plotting purpose
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
future_fitted_series = pd.Series(future_fitted)
|
314 |
+
future_fitted_series.index = future_index_of_fc
|
315 |
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
|
316 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
317 |
|
318 |
+
future_sales_growth = sales_growth(df, future_fitted_series)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
df = dates_df(future_sales_growth)
|
321 |
st.write("Forecasted sales in the next 3 months")
|
322 |
st.write(df)
|
323 |
|
|
|
325 |
question = st.text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
|
326 |
query_button = st.form_submit_button(label='Generate Answer')
|
327 |
|
328 |
+
if query_button or question:
|
329 |
answer = get_converted_answer(df, question)
|
330 |
st.write("The answer is:", answer)
|